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Abstract— Intracranial pressure (ICP) is a cranial vital sign,
crucial in the monitoring and treatment of several neurolog-
ical injuries. The clinically accepted measurement modalities
of ICP are highly invasive, carrying risks of infection and
limiting the benefits of ICP measurement to a small subset
of critically ill patients. This work aims to take a step towards
developing an accurate noninvasive means of estimating ICP,
by utilizing a model-based frequency-domain approach. The
mean ICP and pulse pressures of ICP are estimated from
arterial blood pressure (ABP) and cerebral blood flow velocity
(CBFV) waveforms, and the estimates are validated on an adult
population, comprising of around two hours of data from five
patients. The algorithm was shown to have an accuracy (mean
error) of −1.5 mmHg and a precision (standard deviation of the
error) of 4.3 mmHg in estimating the mean ICP. These results
are comparable to the previously reported errors among the
currently accepted invasive measurement methods, and well
within the clinically relevant range.

I. INTRODUCTION

A sizeable fraction of the annual hospitalizations in the
United States are due to a variety of neurological and
cerebrospinal injuries and disorders [1]. Each year around
2.8 million people suffer a traumatic brain injury (TBI) [2],
over 100,000 people suffer a hemorrhagic stroke [3], and
nearly 80,000 new cases of brain tumor are reported [4]. In
a subset of these patients, measurement of the intracranial
pressure (ICP) is clinically indicated to detect, monitor, and
treat acutely life-threatening conditions. Such conditions may
arise because of poor brain perfusion with elevated ICP or
brain herniation [5], [6]. Current measurement modalities,
however, are invasive, involving the insertion of a catheter
or pressure transducer into the cerebrospinal fluid space or
the brain tissue, respectively, thereby exposing patients to the
risk of tissue damage and infection [7]. There remains a sig-
nificant need for noninvasive determination and continuous
tracking of ICP.
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Kashif et al. [8] proposed a model-based approach to
estimate ICP continuously and noninvasively from arterial
blood pressure (ABP) and cerebral blood flow velocity
(CBFV) waveform signals, and the authors chose to solve
the estimation problem in the time domain. Noraky et al. [9]
extended this prior work and formulated a frequency-domain
approach to ICP estimation. Both approaches had limitations
that may have impacted their accuracy and robustness. The
time-domain approach had the inherent limitation of needing
to estimate the phase lag between the cerebral ABP and
CBFV signals. This limitation motivated the explorations
by Noraky et al. [9]. Here, we build on these past model-
based ICP estimation approaches and seek to address their
limitations.

II. MATERIALS AND METHODS

A. Model of cerebrovascular physiology

Building on the prior work Noraky et al. [9], we utilize
a second-order lumped parameter circuit model (Fig. 1) to
represent a major cerebral vascular territory, such as the
middle cerebral artery (MCA). Here, pa(t) represents the
cerebral ABP, q(t) represents the cerebral blood flow (CBF),
and pic represents the ICP. R captures the resistance to blood
flow through the vascular territory, C models the lumped
compliance of the vessel wall and surrounding brain tissue,
and L represents the inertia of blood [10]. The cerebral blood
flow is driven in the model by the difference between ABP
and ICP, known as the cerebral perfusion pressure (CPP),
which we will denote here as x(t).

CPP = pa(t)− pic = x(t) (1)

The circuit model in Fig. 1 is described mathematically

Fig. 1: Second-order circuit model used to noninvasively
estimate ICP, bulding upon the model proposed by Noraky
et al. [9].



by
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It can be shown that this circuit equation is invariant to
multiplicative scaling of q(t), by rescaling of R, L and C [?].
By scaling the circuit equation by a constant factor to account
for the effective arterial cross-sectional area, the CBF can be
transformed to the CBFV, which is physically measurable by
means of a transcranial Doppler (TCD) ultrasound device.
Henceforth, q(t) will refer to this CBFV waveform, while
R, L and C will represent the transformed versions of the
respective parameters.

The frequency-domain representation of Equation 2 is
given by

|Q( jω)|2[(1−ω
2LC)2 +(

ωL
R

)2] = |X( jω)|2[ 1
R2 +(ωC)2] (3)

The use of power spectra to solve the constraint implied by
these differential equations overcomes the primary limitation
of the time-domain approach as the phase lag between the
input waveforms does not need to be estimated [9], [10].

For estimating ICP, ABP and CBFV waveform data are
first divided into non-overlapping windows of 60 beats dura-
tion. The values of the three circuit parameters (R, L and C)
and the ICP are assumed to be constant over each estimation
window. Hence, the algorithm returns a single estimate of
mean ICP every 60 beats. Ideally, the scaled parameters R,
L and C can be estimated from Equation 3 using a least-
squares optimization at appropriately computed harmonic
frequencies of the heart rate. However, the CPP power
spectrum, |X( jω)|2, is unknown as it requires knowledge
of the ICP waveform which has to be ultimately estimated.

B. ICP and CPP reconstruction

Careful inspection of the dynamics between the mean-
subtracted ABP and ICP waveforms on a beat-by-beat basis
resulted in the observation that they tend to conform to a
characteristic shape (Fig. 2). To determine the ICP waveform
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Single beat ABP-ICP dynamics

Fig. 2: Representative example of a single-beat dynamics
between mean-subtracted ABP and the corresponding mean-
subtracted ICP. There are two clear phases: a systolic up-
stroke (blue line) and a diastolic decay (black cubic polyno-
mial).

variation from the available ABP waveform variation, we
modeled the systolic (upstroke) and diastolic (downstroke)
phases of the ABP-ICP relationship according to a linear
relationship and a cubic spline, respectively.

picup(t) = pup(t)∗αup +βup (4)

picdown(t) = βd +
3

∑
i=1

pi
down(t)∗αid (5)

picrecon(t) = [picup(t) picdown(t)] (6)
xrecon(t) = p(t)− picrecon(t) (7)

A small portion of a separate pediatric clinical dataset
available to us was used as a training dataset to compute
fitting parameters αup and βup for the upstroke (blue line in
Fig. 2), and α1d , α2d , α3d and βd for the downstroke (black
line in Fig. 2). The mean-subtracted ICP waveform, and
hence the intra-beat variations in CPP, are then reconstructed
(picrecon(t)) over each estimation window for all the data
records, using the fitting parameters and corresponding ABP
waveform phases (pup(t) for upstroke and pdown(t) for the
downstroke).

C. ICP estimation

The power spectra of the mean-subtracted CBFV, Q( jω)|2,
and reconstructed CPP, |X( jω)|2, waveforms are computed
over each estimation window, using a Hamming-window
based averaged periodogram method over two sub-windows.
Eight spectral peaks are selected in both spectra using a scan-
ning technique around the harmonics of the heart rate. These
eight frequency locations are then used to formulate Equation
3 in a least-squares sense. The least-squares optimization is
solved to yield parameter estimates R̂, L̂ and Ĉ over each
estimation window. Finally, the noninvasive estimate of mean
ICP is computed over each estimation window as

n̂ICP = pw− R̂ qw (8)

where pw and qw denote the window-averaged ABP and
CBFV, respectively.

D. Signal preprocessing and hydrostatic pressure correction

The ABP and CBFV waveforms used for validating our
algorithm were collected from adults in the neuro-ICU and
hence were prone to noise and several artifacts. As a result, a
previously developed automated preprocessing pipeline [11],
[12] was implemented to scan through the ABP and CBFV
data and select segments where both waveforms were of good
signal quality. These segments were then manually inspected
to remove any potential visually distinguishable artifacts.
Finally, an 80-tap finite impulse response (FIR) bandpass
filter, with pass band cutoffs at 0.5 Hz and 12 Hz was used
to filter both waveforms.

At the bedside, ABP is routinely recorded by cannulation
of the radial artery in patients with the pressure transducer
levelled to the position of the heart. However, since the
patients are maintained in a head-up position, we had to
correct the ABP to the level of the MCA (represented by



our model) by subtracting the effective vertical column of
blood between the two measurement locations.

ABPMCA = ABPradial−ρblood ∗g∗ (hMCA−hradial) (9)

The density of blood ρblood was taken to be 1060 kg/m3.
The values of hMCA and hradial were recorded as the vertical
heights of the ICP and ABP transducers, respectively, as
measured from the floor.

E. Clinical Dataset

We designed and deployed a custom data acquisition
system in the neuro-ICU at Boston Medical Center (BMC) to
collect high fidelity waveform and ancillary data from adult
patients admitted with a variety of neurological insults [13].
The data collection was approved by the Institutional Review
Boards at BMC and MIT, and informed consent was obtained
from the patient or their legally authorized representative.
The recorded data had to satisfy several criteria to serve as
inputs to our estimation algorithm for validation. Briefly, the
basic requirements were the presence of a radial arterial line
for invasive ABP measurement, the invasive measurement of
ICP by either an external ventricular drain or parenchymal
probe, and the recording of important ancillary data from the
bedside such as the vertical heights of pressure transducers.
CBFV data were recorded using either the DWL Doppler
BoxX or the Philips CX-50 ultrasound devices, while the
ABP and ICP waveforms and vital signs were streamed to
our system from the GE Solar 8000i patient monitors through
the GE TramRac 4A. After passing the data through the sig-
nal preprocessing pipeline and manually rejecting artifacts, a
total of one hour and 48 minutes of good quality data were
selected from five patients (4 male, 1 female), for analysis of
our estimation algorithm in this study. The patients ranged in
age from 20 to 74 years and were hospitalized for severe TBI
(3 patients), brain tumor (1 patient), and acute hydrocephalus
(1 patient).

III. RESULTS
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Bland-Altman Plot of mean ICP Estimates in adult population

Bias = −1.5 mmHg
RMSE = 4.5 mmHg
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Fig. 3: Bland-Altman plot comparing estimated and mea-
sured mean ICP on a window-by-window basis in an adult
population.

We estimated mean ICP over 60-beat windows and pulse
pressure over each beat, and compared these estimated to

those of the clinically measured invasive ICP. The resultant
estimates for mean ICP had a bias of −1.5 mmHg, a root
mean-squared error (RMSE) of 4.5 mmHg and a SDE of 4.3
mmHg. These results are summarized in the Bland-Altman
plot [14] shown in Fig. 3.

The spread of the algorithm’s performance was also in-
spected, to compute the number of estimates falling below
a RMSE threshold, on a window-by-window, study-by-study
and patient-by-patient basis. The cumulative RMSE distri-
bution functions generated by varying this RMSE threshold
are shown in Fig. 4. Around 80% of the estimation results
fell below a RMSE threshold of 6 mmHg on a window-by-
window basis.

IV. DISCUSSION
We analyzed the performance of our estimation algorithm

on five adult patients and the resultant accuracy and precision
of −1.5 mmHg and 4.3 mmHg, respectively, are highly
encouraging. These errors are well within the clinically
acceptable range for ICP measurement and also compare
favorably to some of the previously reported errors in
comparing invasive ICP measurement modalities. While the
EVDs and parenchymal probes are commonly used, past
studies have shown errors in agreement between the probes.
Lescot et al. reported limits of agreement of (−8.1 mmHg,
6.9 mmHg) and (−6.7 mmHg, 7.1 mmHg) when comparing
15 instances of two different parenchymal probes to a
reference EVD measurement [15]. These error metrics are
in the same range as our algorithm’s limits of agreement of
(−9.9 mmHg, 6.9 mmHg). Brean et al. reported a bias of 0.7
mmHg and a standard deviation of the error of 6.8 mmHg,
when comparing simultaneous EVD and intraparenchymal
ICP measurements in one subarachnoid hemorrhage patient
[17]. Other systematic reviews of the different ICP modalities
have also been documented, reporting errors and drawbacks
of each of the methods [7], [18]. It is highly encouraging
that our estimation results are comparable to the currently
accepted clinical invasive standards.

Our algorithm also has the advantage of being calibration-
free and robust. The fitting parameters for the ABP-ICP
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dynamics were obtained on a small portion of an independent
pediatric clinical dataset. We were completely blinded to all
the ICP waveforms in the dataset, proving the robustness
of the algorithm. Our algorithm also performed very well
on patients from a diverse range of ages and neurological
pathologies.

However, our algorithm and the analysis presented in this
study have some limitations and scope for further work.
Primarily, the amount of clinical data available to us in
this study was highly limited. While the results on different
pathologies are encouraging, it is imperative to validate our
results on a larger patient population, demonstrating further
diversity in demographics and pathologies. We continue to
work towards this end as the data collection at BMC is
ongoing. Another practical limitation of our work is the use
of radial ABP as a surrogate for the MCA ABP. These two
waveforms potentially have morphological differences, apart
form the hydrostatic compensation we accounted for. Finally,
the homogeneity of the clinical dataset with respect to the
ICP values poses a challenge. Patients in the neuro-ICU are
constantly monitored and their ICP is controlled to remain
within normal ranges. As a result, we were so far unable to
test our algorithm’s accuracy on ICP values above 25 mmHg
or on patients with sustained intracranial hypertension.

V. CONCLUSIONS

ICP serves as a crucial indicator in assisting physicians
in clinical decision-making and in guiding treatment of
patients with neurological injuries. However, the current ICP
measurement modalities are highly invasive and hence there
is a pressing need to develop a noninvasive ICP measurement
technique, to expand the patient pool who could benefit
from the monitoring of this cranial vital sign. In this study,
we took a step towards solving this problem by developing
and implementing a frequency-domain, model-based, non-
invasive ICP estimation algorithm. We analyzed the results
on a clinical dataset of five adult patient and obtained an
accuracy of −1.5 mmHg and a precision of 4.3 mmHg. The
algorithm performance is encouraging, and further validation
in an expanded dataset is warranted.
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