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Model-based Separation, Detection, and
Classification of Eye Movements

Federico Wadehn*, Thilo Weber*, David J. Mack, Thomas Heldt, and Hans-Andrea Loeliger

Abstract— Objective: We present a physiologically-
motivated eye movement analysis framework for model-
based separation, detection, and classification (MBSDC) of
eye movements. By estimating kinematic and neural con-
troller signals for saccades, smooth pursuit, and fixational
eye movements in a mechanistic model of the oculomotor
system we are able to separate and analyze these eye
movements independently. Methods: We extended an es-
tablished oculomotor model for horizontal eye movements
by neural controller signals and by a blink artifact model. To
estimate kinematic (position, velocity, acceleration, forces)
and neural controller signals from eye position data, we
employ Kalman smoothing and sparse input estimation
techniques. The estimated signals are used for detect-
ing saccade start and end points, and for classifying the
recording into saccades, smooth pursuit, fixations, post-
saccadic oscillations, and blinks. Results: On simulated
data, the reconstruction error of the velocity profiles is
about half the error value obtained by the commonly em-
ployed approach of filtering and numerical differentiation.
In experiments with smooth pursuit data from human sub-
jects we observe an accurate signal separation. In addi-
tion, in neural recordings from non-human primates the
estimated neural controller signals match the real record-
ings strikingly well. Significance: The MBSDC framework
enables the analysis of multi-type eye movement record-
ings and provides a physiologically-motivated approach to
study motor commands and might aid the discovery of new
digital biomarkers. Conclusion: The proposed framework
provides a model-based approach for a wide variety of eye
movement analysis tasks.

Index Terms— Eye movements, Kalman filter, oculomotor
system, saccades, signal separation, smooth pursuit eye
movements, sparse Bayesian learning, state space models.

. INTRODUCTION

Eye movements provide valuable information about the vi-
sual system and related brain areas [1]. Early oculomotor stud-
ies took place in tightly controlled environments with head-
fixed subjects, simple stimuli, and single-type eye movements.
In contemporary mixed-type [2] and free-viewing [3] exper-
iments, accurate estimation of eye movement parameters is
more demanding. A further challenge is posed by the large va-
riety of eye tracking technologies, which range from invasive
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methods such as search coils, to electro-oculography, to non-
contact methods, such as infrared- and video-oculography [4],
[5]. These techniques vary, among others, in their signal-to-
noise ratio and sampling rates. Such diverse recordings call
for robust and flexible signal analysis algorithms.

Traditionally, kinematic signals (eye position, velocity and
acceleration) have been obtained by lowpass filtering and
numerical differentiation of the measured eye position [6].
Unwary filtering, however, can substantially alter character-
istics of eye movement recordings, in particular saccadic
peak velocities [7], [8]. Nonetheless, filtered position and
velocity profiles are commonly used for detecting saccades and
extracting relevant parameters. Prominent approaches are the
Identification by Velocity (IVT) or Dispersion Threshold (IDT)
algorithms [9]. By themselves, IVT and IDT are not well-
suited for multi-type recordings due to the overlap of saccades
and other eye movements in the velocity domain [10]. In
particular, in smooth pursuit eye movement (SPEM) analyses,
naturally occurring catch-up saccades must be detected to
allow for a meaningful analysis. An ad-hoc remedy is to first
estimate the SPEM velocity profile by lowpass filtering and
then to detect saccades using time-varying thresholds [11].

Recent machine learning approaches, trained on annotated
data, classify eye position recordings directly into different
types of eye movements using algorithms such as random
forests [12], hidden Markov models [13], and neural net-
works [14]. While performant, such approaches lack a physi-
ological basis and their estimation quality heavily depends on
the training data available. Hand-labeled data, however, were
shown to present substantial inter-rater variability [15], [16].

In biomechanics there has been a significant effort in mecha-
nistic modeling of the oculomotor plant and the pertaining neu-
ral controller signals [17]-[21]. Such models have been used,
among others, for obtaining biomarkers from model parameter
estimates [22]. In this paper, we propose a physiological model
for different types of eye movements such as saccades, smooth
pursuit eye movements (SPEM), and fixational eye movements
(FEM). The present model describes one-dimensional eye
movements and is obtained by extending the oculomotor
plant [20] for horizontal eye movements with neural controller
signals for saccades, SPEM, and FEM. By combining this
model with state space methods such as Gaussian message
passing [23] (a generalization of Kalman filtering) and sparse
input estimation [24], we obtain a unifying framework that
we denote Model-Based Signal Separation, Detection, and
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Fig. 1: Physiological and measurement model of the MBSDC framework: The three neural controller systems for saccades, SPEM, and FEM feed
into the oculomotor plant, whose output (eye position 0) is fed into the measurement model. The latter accounts for measurement noise and blink

artifacts, and outputs the measured eye position y.

Classification (MBSDC'.), for

1) estimation of kinematic signals (eye position, velocity,
acceleration, and forces of oculomotor muscles),

2) estimation of neural controller signals to the oculomotor
muscles from positional eye movement recordings,

3) separation and classification of eye movements,

4) extraction of relevant parameters (e.g., saccadic ampli-
tudes, durations, and peak velocities as well as post-
saccadic oscillation start/end points).

Preliminary results of this approach were presented in [25].

Il. BACKGROUND

Over a hundred years ago, Dodge published the first
taxonomy of the five main types of eye movements [26],
now commonly known as saccades, SPEM, vestibulo-ocular
reflex (VOR), optokinetic nystagmus (OKN), and vergence.
Saccades are fast eye movements for rapid gaze changes. Their
characteristics are influenced, among others, by age [27], expo-
sure to video games [28], and neurodegenerative diseases [29].
In spinocerebellar degeneration, for example, saccadic peak
velocity is markedly reduced [30]. SPEM are slower eye
movements for “following an object moving across the field
of vision” [26]. The ability to perform SPEM can be affected
by various disorders, among which schizophrenia [31] and
autism [32]. VOR is a slow, compensatory eye movement for
“fixation during head rotation” [26]. OKN is a sequence of
fast and slow eye movements that stabilize the gaze during
egomotion, and in vergence the two eyes slowly turn into
opposite directions. While the eyes seem still during fixations,
there is yet another class of eye movements subsuming mi-
crosaccades and slow fixational eye movements (FEM) below
1° of visual angle. These include tremor and drift. FEM
become pronounced in, e.g., Parkinson’s disease, where ocular
tremor was observed in a large fraction of patients [33].

[1l. PHYSIOLOGICAL AND MEASUREMENT MODEL

Dodge’s eye movement taxonomy phenomenologically is
still undisputed, but it is not reflected in the underlying
neurophysiology. The neural controller system actually splits
into separate subsystems in the brainstem [21], [34]: A slow
subsystem responsible for SPEM, VOR, vergence and the slow
phases of OKN, and a fast subsystem for generating saccades

'Code: https://bitbucket.org/magnetilo/mbsdc_code

and the quick phases of OKN. Motivated by this distinction,
we split the neural controller into three subsystems: one for
fast, one for slow, and one for fixational eye movements. We
denote these the saccade, SPEM, and FEM controllers (Fig. 1).

The complete model consists of a physiological and a
measurement model (dashed boxes in Fig. 1). The physi-
ological model is composed of the three neural controller
systems and a mechanistic oculomotor plant for horizontal eye
movements. The model’s output Y2 represents the noise-
free eye position. The signal Y2 is fed into the measurement
model that accounts for measurement noise and blink artifacts.
Each of these subsystems is described by a linear state space
model (SSM) of the form

X = At x ) Bimym (1)
v = otmx, 2)

with states X(™ = (X™ . X! inputs U™ =
@™, ... U™, outputs Y™ = (v, y™), and
m € {Sacc, SPEM, FEM, Plant, Blink}. The length (in sam-
ples) of the eye position time series is denoted by L. The
input to the oculomotor plant is given by

U]l:lant — kSacc + YkSPEM + Y]SEM> (3)

i.e., the superposition of the saccadic, SPEM and FEM neural
controller signals. The recorded eye position is

Yk _ Y]f’lant + Y]?link + Z]g, (4)

with Z % N (0, 08.;.) being an independent and identically
distributed (iid) Gaussian noise signal. The signal YBlink ac-
counts for blink artifacts. Note that we follow the convention to
denote variables as uppercase when they are random quantities
and lowercase when they are observed realizations. In the
following, we describe each subsystem in detail.

A. Oculomotor Plant for Horizontal Eye Movements

In our model we used the oculomotor plant for horizontal
eye movements from [20], shown in Fig. 2. This model is
described by the linear differential equations

G(t) + Rgo(t) + R10(t) + Roe(t)

= 5 (BalFig(t) = Fan(8)] + Kol Fig(t) = Fan(8)]) (5)
Fug ()= [Nugl(t) = Fug(8))/ 7+ (©)
Fam (t) = [Nant(t) - Fant(t)]/7-> (7
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where ) )
o(t) [, 6(t) [°/s], 6(t) [°/s?] (8)

are the one-dimensional angular eye position, velocity, and
acceleration, respectively, and

Fag(t) [N], - Fane() [N, Nag(t) [N], Nane(t) [N 9)

are the active state tensions and neural controller signals of
the agonist (ag) and antagonist (ant) muscles (measured in
Newtons [N] as in [18], [20]). The coefficients in (5)—(7) are

180

f= ————— 10
ﬂTJp(Bl JrBQ)7 (10
2K Kse + (Kse + Ki) Kp

Ry = , 11
0 Jp(B1 + B2) (b
2B Kse + 2K By + (B1 + B2) Kp + (Kse + Kit) Bp
Rl = )
Jp(Bl +BQ)
(12)
K. K 2B1B B B2)B
R2: Jp( se + lt)+ 1 2+( 1+ 2) p’ (13)

Jp(B1 + B2)

where the parameters J,,, 1, By, Kge, . . ., are defined in Fig. 2.
Note that in (5)—(7) the agonist and antagonist forces and
pertaining neural controller signals appear only as differences.
Therefore, it is only possible to estimate AF £ Fyg — Fyy and
AN £ Nag — Nay from positional eye data. To express (5)—(7)
as a continuous-time SSM (see [19], Chapter 3.6.3) we define

XPR(E) £ (6(t),0(1), 6(t), AF (1)) (14)
UPant () & AN(t). (15)
The resulting SSM matrices are

0 1 0 0

APlant __ 0 0 1 0
A= Ry “R Ry §(K.-B2| 19

0 0 0 -1
BPlant _ [O 0 % %]T (17)
CPmt=1[1 0 0 0]. (18)

The corresponding discrete-time matrices APan, BPlant apq
CPant ysed in the following computations are obtained by a
zero-order hold discretization with a data-dependent sampling
period 7T (see, e.g., [35]).

The proposed one-dimensional model does not capture the
complexity of vertical and in particular oblique eye move-
ments, which are determined by the interaction of the recti
and oblique muscles. As a first approximation, akin to [22],
horizontal and vertical eye movements can be treated inde-
pendently and the vertical component can be described with a
one-dimensional model as in Fig. 2, with possibly adapted
model parameters. In the case of vertical eye movements,
F,s and Fyy represent the resulting aggregate agonist and
antagonist vertical forces, respectively. For signal separation
and saccade detection such simplified representation suffices
(see Section V-D and Fig. S3 in the Online Supplementary
Material). However, such aggregation would clearly not be
sufficient for neural input estimation. To capture the full
complexity and to account for the fact that horizontal and
vertical saccades are not independent, 3D models such as [21]
could be used instead.

o(t)

Nag(t) Nant(t)

Fig. 2: Oculomotor plant for horizontal eye movements from [20]. Jp is
the eye ball's moment of inertia; r is the radius of the eye globe; Kse,
Ky, B1, and B» are spring and damping constants of the agonist and
antagonist muscles (lateral and medial recti); K, and Bp are the lumped
spring and damping constants of the other eye muscles and supporting
tissues surrounding the eye ball; and 7 is the time-constant of the first-
order lag system whose inputs are the neural controller signals Nag and
Nant, and whose outputs are the active state tensions Fag and Fant.

B. Saccade Controller

The saccadic neural controller signal

YkSacc 4L ANEBCC’ (19)

with k = 1,..., L, is commonly approximated by a pulse-step

signal [17], [18]. Such pulse-step signals can be modeled by a

zero-order hold system with ASace — pSace — (oSace — 1 e
Xzacc _ Xza_ci + Ulgacc
YkSacc _ Xgacc

(20)
2L

with UEHCC,XzaCC, YkSacc c R and USacc — (Ulsacc’ . Ugacc)
being a sparse input signal (i.e., US*° = ( for most entries).

1) Modeling sparse inputs: In Bayesian estimation, sparse
inputs U = (Uy,...,Ur) with Uy, e Rand k=1,..., L, are
commonly modeled by iid sparsity-promoting priors p(uy) as
described in the Appendix D. Sparse Bayesian learning [36]
relies on the hierarchical representation [37]

p(uy) = sup N (ug|0,02)p(or), (22)

0,20

with a suitable hyperprior p(o) (see Appendix D, (79)). Since
az is a variance, such representations have been called normal
with unknown variances (NUV) [24], [37]. Using this NUV
representation for U, for fixed o}, the sparse inputs
become Gaussian, i.e., US* ~ N(0, (03%°)?). Inference in
SSMs driven by such Gaussian inputs can be carried out via
Kalman smoothing. However, the representation (22) requires
an optimization over the o’s. This can, e.g., be done by an
expectation maximization (EM) algorithm (Section IV-A.2),
which alternates between a Gaussian message passing step
with fixed oj’s and an update step for the oy’s.

2) Modeling group sparse inputs: Neural recordings in non-
human primates suggest that Y5 is more accurately de-
scribed by a pulse-slide-step rather than by a simple pulse-
step [20], [38]. In a pulse-slide-step, the initial upstroke is
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followed by a transient exponential decay, before the step con-
cludes with (usually) a precipitous drop to baseline. Figures 5a
and 7 show examples of such pulse-slide-step controller sig-
nals. To allow shapes of Y5 beyond pulse-steps, we assume
that the inputs US%¢ are group-sparse, i.e., the sparsity pattern
has temporal correlations. To obtain group sparsity, we filter
the estimated NUV parameters 052 = (g% ... 03%) with
the FIR filter

wp=c-kTy-e ¥0/™ |k =1,...,D, (23)

where c is a normalizing constant and D the filter length, that
depends on the sampling rate 7. Using our neural recordings,
we find that suitable values of the decay rate 7,, lie between
2 and 8 ms.

C. SPEM Controller

The smooth adaptation to the target velocity during the
open-loop phase of SPEM [39] suggests to model the neural
SPEM controller signal

by a first-order hold system with smooth velocity changes.
This corresponds to a SSM of the form (1)—(2), with

ASPEM _ [(1) :ﬂ | BSPEM _ [\/Of] | CSPEM _ [1 0] . (25)
with U SPEM, YkSPEM € Rand X SPEM € R2, where the velocity
(second component of the state vector) is driven by a Gaussian
input U/SPEM S A/ (0, 02pgy)- This model is particularly useful
if the target motion is unknown.

In controlled experiments with a sinusoidal target velocity,
the neural controllers can instead be modeled by the SSM

1 1. 0
ASPEM = 0 cos(27 frugecTs)  SIN(27 frargecZt)
10 —sin(27 frageTs)  cOS(2T frarget )
[0 0
BSPM_ | yT; 0 |, C™=T[1 0 0], (26)
L 0 VT,

where frarge is the frequency of the target. This SSM is driven
by a two-dimensional input USPEM %S A/(0, 02y - I2), Where
I, indicates a 2 x 2 identity matrix.

D. FEM Generator

FEM are small variations around the fixation target, which

in our model are generated by the neural signal
YIEM & ANFEM, 27)

This signal is modeled by a first-order lag system with AFEM =
e~ To/mem - BFEM — /T CFEM — 1 resulting in

XII:EM _ efTs/'rpEM . XII:F;I\{I + /TS . U}:EM
FEM __ yFEM
Yk =X k )

(28)
(29)

with UFEM, XFEM yFEM ¢ R and UFEM X A/(0, 02y, )-

E. Blink Artifact Model

The most common type of disturbance in eye movement
recordings are blinks. Depending on the recording technique,
these have different signatures. Here, we restrict ourselves to
blinks in VOG data, which are characterized by a signal drop
(Fig. 4b). We model the blink signal (affecting the measured
eye position) by a zero-order hold system

Blink __ yBlink Blink

Blink Blink

(30)
(3D
with ABlink — BBlink — CBlink — 1, Ulglink, X]lglink’ Y,?hnk cR.

The inputs UB™® are sparse and are modeled (akin to the
saccade inputs in Section III-B) by NUVs.

F. Complete Model

The complete SSM that represents both the physiological
and measurement model (Fig. 1) obtained by cascading the
subsystems discussed above, is still a linear SSM of the form

X, = AX,_1+ BUg 32)
Y, = CXy + Zy, (33)
with
X Blink .
Xllglam U}]:lmk
k USacc
X = | Xp 1, U = | doew (34)
XSPEM k
kFEM UII:EM
Xk
) . APlant BPlant . (CSacc CSPEM CFEM)
_ Blink ’ )
A= dlag (A ) |: 0 diag(ASﬂCC, ASPEM’ AFEM) (35)
BBlink 0
B=1| 0 0 (36)
0 diag(BS“CC, BSPEM7 BFEM)
C = (CvBlink7 CvPlam7 O), (37)

where diag(A, B) denotes the block-diagonal concatenation

of the (possibly non-square) matrices A and B, and O is an all-
zero matrix of suitable dimensions. The covariance matrices
of the input Uy and the initial state X are

Sacc

S, £ diag((0"™)?, (03°)%, 0eem - I, 0fem)  (38)
Yy, £ diag(XRink, i wixee pPEM pEM) - (39)

The goal now is to estimate the states and inputs (34)
from measured eye position data. This enables the recovery
of kinematic and neural signals, and the separation of eye
movements.

IV. ESTIMATION

After having introduced the model, we are now ready to de-
scribe the algorithmic components of the MBSDC framework
(Fig. 3). The main components are the state and input estima-
tion steps presented in Section IV-A. The physical signals (eye
position, velocity, acceleration, force, and neural controllers)
are then extracted from the estimated states (Section IV-B.1).
These physical signals are further used to detect saccades and
blinks (Sections IV-B.2 and IV-B.3), and for classifying the



WADEHN et al.: MODEL-BASED SEPARATION, DETECTION, AND CLASSIFICATION OF EYE MOVEMENTS 5

Yy (Measured Eye Position)

State and Input Estimation (Section I1I-A) |

J| M-Step (IlI-A.2)

H A 4 . énew
| Kalman Smoothing (E-Step, llI-A.1) r

p(z, uly, ©°)

z,u

| Extraction of Physical Signals (III-B.1)|

lEstimated physical signals {5, §Sa°°, gspEM, .

§ | Saccade/Blink Detection (IlI-B.2/3) |

lStart/end points

| Separation Heuristics and Re-estimation (11I-B.4) |

lRe-estimated physical signals {8, 82, §SPEM | 1

| Eye Movement Classification (llI-B.5) |

lCIass labels { ‘Fixations’, ‘Saccades’, ‘PSOs’, ‘SPEM’, ‘Blinks’ }

Fig. 3: Algorithmic components of the MBSDC framework.

recordings into different types of eye movements (Section IV-
B.5). Details of the underlying estimation approach are pro-
vided in the appendices.

A. State and Input Estimation

To describe state and input estimation, we adopt a proba-
bilistic view on SSMs. The joint density of the SSM (32)—(33)
factors according to

L
p(y, , u) H (yr|zr)p(r|er—1, un)p(ur), (40)
where the factors are given explicitly in (58). The inputs
driving SPEM and FEM have iid Gaussian priors p(uSPEM)
and p(ufEM), respectively. By contrast, the inputs triggering
saccades and blinks, are equipped with sparsity-promoting
priors p(uS%¢) and p(uB"™%), represented via NUVs (22).

If all inputs were Gaussian, state and input estimation could
directly be performed via Gaussian message passing [23],
a generalization of Kalman smoothing (see Appendix B).
However, due to the NUV representation of the sparsifying
priors, the unknown NUV parameters o5 and o®"% have to
be estimated first. The observation noise level onoise iS treated
as an additional unknown parameter that needs to be estimated.
Learning unknown parameters in SSMs can be performed via
the EM-algorithm (Appendix D), where the E-step boils down
to Kalman smoothing and the M-step has closed-form updates
for the unknown parameters as described below.

1) Kalman smoothing: For fixed input variances, the pos-
terior distributions of the state X and the input U, with

k=1,...,L, given the data y = (y1,...,yr), are
p(xk|y) = N(xk‘meVXk) 41)
p(ukly) = N(uklmu, , Vu,). (42)

The mean vectors (mx, and my,) and covariance matrices
(Vx, and Vy, ) are recursively updated using the approach de-
tailed in Appendix B. The state and input trajectory estimates
are obtained from the respective means ¥ = myx and u = my.

2) M-step of the EM algorithm: The unknown parameters
Sacc Sacc _Blink Blink
:{Ul yee0p 01 ..., 07 7O'Noise}a

(43)

are iteratively updated by an EM-algorithm. At each iteration
the NUV parameters 05 and o™ are updated according to

U2, @old (m)
_(mymewy2 _ E[(U™)|y, 0% + 28
(Uk ) - 2a(m)+1 ) (44)

with & € {1,...,
ments

L}, m € {Sacc,Blink}. The second mo-

E[(U{™)2]y, 4] = Vym + i (45)
are computed from the means and variances in (42). Appen-
dices D and E discuss how the hyperparameters o™ > 0 and
B(m) > ( are chosen.

Similarly, at each EM-iteration, the observation noise level

is updated according to

L Qo
T 21 E[Z7]y, 0]
20moise + 1

(FRoise)” =

; (46)

where the second moment
EZily, %) = yi — 2y, Cmx, +C(Vx, +mx,my,)C", 47)

is computed using the means and variances of the posterior
distribution (41). The choice of the hyperparameter angise > 0
is described in Appendix E.

B. Postprocessing

Here we describe how to extract the physical signals from
the estimated states Z and how to use these for saccade
detection and for eye movement classification. In addition, we
propose a heuristic for improving the signal separation.

1) Extracting physical signals: The kinematic signals

0, 0, 6, AF, (48)
the saccadic, SPEM and FEM neural controller signals
Z]\VSacc K]\VSPEM ZJ\VFEM (49)

and the estimated blink artifact signal 7" can be read out

directly from the estimated state trajectory Z (Eqns. (14), (19),
(24), (27), (34)). The saccadic kinematic signals

éSacc ESacc g'Sacc ﬁSacc (50)
are obtained by simulating the state response of the oculomotor
plant to the estimated input ANSue . Similarly, the separated
SPEM and FEM signals

é\SPEM’ gSPEM7 ESPEM’ ESPEM, (51)
frEM. gFEM, gFEM’ ﬁFEM7 (52)

are obtained by simulating the state response of the oculomotor
plant to the inputs ANSPEM and ANTEM, respectively.
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(a) Saccade detection (b) Blink detection
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Fig. 4: (a): Detection of saccade start/end, PSO-end and peak velocity
locations, marked by O, O, ¢, x, respectively, and (b): Detection of
blink start/end locations, marked by A, 7. The estimated eye position,
velocity and acceleration profiles used for detection are shown in gray.
The respective detection thresholds By and Bag. are shown in blue.
In addition, the top plot shows the re-estimated eye positions after (a):
The separation heuristic described in Section 1V-B.4 and (b): The signal
interpolation described in Section I1V-B.3.

2) Saccade detection: Given the estimated saccadic velocity

o'Sacc éSacc

and acceleration profiles , we are in a position
to detect saccade start/end, post-saccadic oscillation (PSO)
end as well as peak-velocities. This is done using an IVT-
like approach based on fixed velocity (Bye) and acceleration
(Bace) thresholds. For this, we proceed as follows (Fig. 4a):

First, we detect by a local search all peaks in g5ac that
have magnitudes ranging from 20°/s to 1000°/s. These are
candidate saccadic peak velocities. Considering only time
indices preceding a detected peak, we define the corresponding
saccade’s start point as the sample closest to the peak location
for which \ésa“\ < Bve. Similarly, considering only time
indices following a detected peak, we define the first index

for which |95a°°| < By, as the saccade’s end point. The first

index for which |ésacc| < Bye and |ésa0c| < Bace determines
the PSO-end point. Note that there are potentially multiple
velocity peaks between the start of a saccade and the PSO-
end point. If this is the case, the saccade’s peak velocity is
chosen as the one with the largest magnitude.

3) Blink detection and interpolation: In VOG recordings,
blinks are typically characterized by either abrupt signal
drops (Fig. 4b, top) or by velocities outside the physiological
range, e.g., velocities >1000°/s. Signal drops are captured
by the sparse input signal UP'"% In this case, blinks are
located by searching for non-zero entries in UP'""%, Non-zero
entries are then assigned to the same blink if the velocity
magnitude between these stays within a narrow band of 5°/s.
In contrast, blinks that do not manifest themselves by an
abrupt signal drop, are located by searching for velocity
magnitudes >1000°/s. In both cases the final blink start and
end points are determined following the same procedure as for
the detection of PSO-end points, using fixed thresholds By
and Ba. (Fig. 4b, center and bottom). After the blinks have
been detected, the physical signals are re-estimated with the
observation noise level onpise Set to some large value during the

blink (Fig. 4b, top). Eye movements during blinks are thereby
smoothly interpolated by the physiological model.

4) Separation heuristic and re-estimation: In SPEM-free
recordings, the eye position should not change between a PSO-
end point and the starting point of the following saccade. In
practice, however, we observe that these points are not always
aligned in our estimates. This suggests that the saccadic signals
in (50) contain some amount of SPEM. The described position
offsets are therefore corrected by adjusting the last non-zero
input of 5% in the affected saccades. Signal separation can
be further improved by setting to zero all entries of 5%,
that are not part of a saccade. Such spurious inputs can occur
during blinks, or in saccades whose peak velocity is smaller
than 20°/s (Section IV-B.2). After these two post-processing
steps, states and inputs are re-estimated by Kalman smoothing
(Section IV-A.1) with fixed inputs 5%, and the physical
signals are extracted anew (Section IV-B.1), see Fig. 4a top.

5) Eye movement classification: First, we label all ‘Sac-
cades’, ‘PSOs’, and ‘Blinks’ in the recording using the de-
tected saccade and blink start/end points (Sections IV-B.2
and IV-B.3). The remaining samples are classified as ‘SPEM’

if the SPEM velocity |§SPPM| > 1°/s, otherwise they are
classified as ‘Fixations’. Note that with the estimated physical
signals (48)—(52) at hand, more sophisticated classification
algorithms, e.g., with adaptive thresholds [40] could be used.

V. RESULTS

We evaluated the MBSDC framework both qualitatively and
quantitatively on synthetic, human, and non-human primate
data. All data acquisition procedures followed the guidelines
set by the National Institutes of Health and national law, and
were approved by local ethics committees. In the following, we
give illustrative examples for the estimation of physical signals
in simulated and real saccade data (Section V-A.2), neural
controller signals in non-human primate data (Section V-B),
and SPEM in human data (Section V-C). We furthermore
quantitatively evaluate the MBSDC framework’s ability to
recover kinematic signals and detect saccades in simulated data
(Sections V-A.3, V-A 4, and V-A.5) as well as its classification
performance using hand-labeled recordings (Section V-D).

A. Saccade Detection and Kinematic Signal Estimation

We simulated saccades with amplitudes of 0.6°, 1.2°, 2.5°,
5°, 10°, and 20° using the oculomotor plant described in
Section III-A and synthetic pulse-slide-step neural controller
signals. The pulse-slide-steps were constructed using pulse
heights and widths for horizontal saccades reported in [20],
that were slightly adapted such that the simulated saccades fol-
lowed exactly the amplitude-velocity main sequence reported
in [6]. For the quantitative evaluations in Sections V-A.3, V-
A4, and V-A.5, we simulated 100 saccades for each amplitude
at a sampling rate of 1 kHz and added white Gaussian noise
with varying noise levels to these signals.

1) Evaluation setup: We recovered the physical signals both
with sparse (‘Sparse’) and group-sparse (‘Group’) input esti-
mation of saccadic controller signals (Sections III-B.1 and III-
B2) We used OSPEM — 0 N/SQ, OFEM = 0.2 N/S, QlNoise —
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(a) Simulated, Oygige = 0.3° (b) Real (c) Simulated, 0'yjse = 0.05° (d) Real

Filt Filt
—— Group —— Group
. ——— Sim —— Sparse ——— Sim —— Sparse
Z _ —— Sparse —— Group —— Sparse —— Group
= 1 \ —— Group —— Group
<4 \
0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Time [ms] Time [ms] Time [ms] Time [ms]

Fig. 5: (a) and (c): Simulated (Sim) eye position, velocity and neural controller signals, and corresponding estimates obtained from noisy horizontal
eye position data. The position and velocity estimates are obtained by group sparse estimation (Group) and by lowpass filtering and numerical
differentiation (Filt). The detected saccade start/end, PSO-end and peak velocity locations are marked by O, O, 0, and x. The bottom row shows
the recovered neural input using sparse (Sparse) and group sparse input estimation. The neural controller signals cannot be estimated with the
filtering approach. Note that the neural controller signal in (c) consists of two consecutive pulses, which are correctly recovered. (b) and (d): Real

saccades (during SPEM) with similar shapes to (a) and (c), together with estimated physical signals and pertaining saccade markers.

0.5, and ag,e = 0.4 (see Appendix E). To evaluate the
estimation performance of our approach, we also estimated the
eye position and velocity profiles by the traditional approach
of lowpass filtering and numerical differentiation (denoted by
‘Filt’). We set the cutoff frequency and filter order follow-
ing [8], where these values are chosen such that the peak-
velocity is optimally recovered.

2) Estimation of saccade parameters: Figure 5a shows a
simulated horizontal 5° saccade and the estimated position,
velocity, and neural controller signals and Fig. 5b shows a real
horizontal saccade with a similar morphology. We observe that
lowpass filtering flattens the steep rising flank of the saccade
and causes ringing artifacts around the saccades. These prob-
lems are not present in the MBSDC estimates. Figure 5¢ shows
a simulated saccade that we generated by two consecutive
pulses in the neural controller signal. The MBSDC approach
is able to correctly recover these two pulses and consequently
the bimodal velocity shape is correctly reconstructed, whereas
in the filtering approach such details are easily lost. In our
analysis, the saccadic controller signal estimated from some
experimental saccade recordings consisted of two consecutive
neural pulses (Fig. 5d and Online Supplementary Material
Fig. S1), which resemble the “overlapping saccades” described
in Bahill et al. [41].

3) Estimation accuracy on simulated data: Table 1 shows
the reconstruction accuracy of the MBSDC (‘Sparse’ and
‘Group’ sparse) and ‘Filt’ approaches in terms of the root mean
squared error (RMSE) of the recovered position and velocity
signals. Position and, in particular, velocity profiles estimated
with the MBSDC framework have lower RMSEs compared
to the filtering approach. We observe that group sparse input
estimation achieves slightly lower RMSEs than regular sparse
input estimation.

TABLE |
ESTIMATION AND DETECTION ACCURACY OF SACCADES

=001° =0.1° =1°

*
% Noise

Sparse Group Filt

* *
INoise % Noise

Sparse Group Filt  Sparse Group Filt

RMSE Pos. x102 0.29 0.29 0.42 217 1.93 298 286 262 23.6
RMSE Vel. 0.62 0.58 1.34 289 241 523 153 133 250

Prec./Rec. 0.6°  1/1 11 11 1/0.62 1/0.63 1/0.75 1/0 1/0 1/0
Prec./Rec. 1.2° 1/ 71 11 1N 1 1 1/0.01 1/0.02 1/0.03
Prec./Rec.2.5° 1/ 171 11 11 1 1 1/0.49 1/0.70 1/0.59
Prec./Rec. 5° 11 7111 1N 1 1 1 1 1

Estimation method

Upper part: RMSE of estimated position and velocity profiles, averaged
over all simulated saccades (6 different amplitudes, 100 saccades per
amplitude). Bold font marks the best-performing method. Lower part:
Precision (Prec.) and recall (Rec.) of saccade detection, shown for each
amplitude separately. To compare the algorithms, in the lowpass filtering
approach the peak velocity threshold for saccade detection was adapted
to the noise level to yield a precision of 1.

4) Detection performance: The lower part of Table I com-
pares the MBSDC and filtering approach with respect to

# correctly detected saccades

53
# detected saccades ’ (53)

precision =

and
# correctly detected saccades

recall = -
# simulated saccades

; (54)

for simulated saccades with 0.6°, 1.2°, 2.5° and 5° amplitudes.
For small observation noise (oy;,. = 0.01°), all saccades are
detected correctly. With increasing observation noise, small
saccades start being missed, resulting in lower recall values.

5) Peak-velocity accuracy: Fig. 6 shows the amplitude-
velocity main sequence extracted from simulated saccades
(observation noise level o, = 0.3°/s) using the MBSDC
and the lowpass filtering estimates. The accuracy of the
MBSDC framework is practically on par with lowpass filtering
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Fig. 6: Amplitude vs peak-velocity main sequence. Estimated saccadic
peak velocities obtained from the MBSDC framework and by lowpass
filtering. Three different lowpass filters with cutoff frequencies of 80 Hz
(weak), 35 Hz (optimal), and 20 Hz (strong) were used. We simulated
saccades with six different amplitudes ranging from 0.6° to about 10°
that followed the main sequence characteristics described in [6], and
added observation noise with oy, = 0.3°. For estimated main se-
quences (amplitude vs peak-velocity and amplitude vs duration) using
real data, see Online Supplementary Material Fig. S2.

(a) 10° saccade (b) 19° saccade

20 _ _
=3 i
Sl w0
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/ N 200 =
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0 ~ = = 0
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0 50 100 0 50 100

Time [ms] Time [ms]

Fig. 7: Top: Eye movement data from a rhesus monkey performing (a)
a 10° saccade and (b) a 19° saccade, together with estimated position
and velocity profiles. Bottom: Neural firing rate measured in a single
abducens neuron, and estimated neural controller signals. Position and
neural recordings were averaged over 10 runs. The neural firing rate
recordings are shifted 4 ms to the right and scaled in amplitude to fit the
size of the estimated neural controller signal.

with peak-velocity optimized parameters from [8]. Note that
choosing larger (or lower) cutoff frequencies of the lowpass
filter results in overestimation (or underestimation) of the
peak-velocity. The accuracy of the MBSDC approach for very
small saccades is slightly worse than the optimal filter, which
is due to some small saccades being missed (Table I).

B. Estimation of Neural Controller Signals

We used saccade and neural data from [42] to evaluate
the quality of the estimated neural controller signals. This
data consists of synchronized recordings of horizontal eye
positions (search coil, sampling rate 1 kHz) and neural firing
rates in single abducens neurons recorded with tungsten mi-
croelectrodes in rhesus monkeys. The neural controller signal
AN was estimated using the oculomotor plant parameters for
rhesus monkeys reported in [20]. As shown in Fig. 7 the shape
of the estimated neural controller signals coincide strikingly
well with the neural recordings.

Time [s]

Fig. 8: Eye movement recording from a test subject tracking a horizon-
tally moving dot with a sinusoidal velocity profile, and estimated physical
signals. Note that the FEM signal is stronger during the fast SPEM
phases (around time = 1, 2, and 3 s), which hints to signal-dependent
noise affecting motor commands [44].

C. Signal Separation in Sinusoidal SPEM Data

To evaluate the accuracy of the signal separation we used
eye position recordings from subjects observing a horizontally
moving dot with a sinusoidal velocity profile [43]. These
recordings were obtained with a limbus tracker (Skalar IRIS,
Skalar Medical B.V., Delft, Netherlands) at a sampling rate
of 1 kHz. The physical signals were estimated using the first-
order hold model (25) with ospgpm = 1 N/s?, oppm = 0.2
N/s, anoise = 0.5, and agyee = 0.5. The separated signals
are shown in Fig. 8. As an alternative to the first-order hold
model, one can use the sinusoidal velocity model (26). This
leads to comparable separation results, but has the advantage
that additional parameters such as the amplitude and the phase
of the estimated SPEM velocity profile can easily be extracted
(Fig. 9). These parameters might be useful for assessing the
SPEM performance of test subjects which is indicative for
certain neurological pathologies.

D. Classification Performance on Annotated Data

We used the annotated dataset described in [40] that was
employed as ground truth for the comparison of different
eye movement detection algorithms in [45]. The data were
recorded at 500 Hz using the iView X Hi-Speed 1250 eye
tracker (SensoMotoric Instruments, Berlin, Germany). This
dataset contains both horizontal and vertical eye position
recordings from test subjects looking at images (‘Images’),
vertically moving dots (‘Dots’) with constant velocity pro-
files, and videos (‘Videos’). Each recording is furthermore
equipped with sample-by-sample labels (‘Fixations’, ‘Sac-
cades’, ‘PSOs’, ‘SPEM’, ‘Blinks’, and ‘Unknown’) annotated
by two different eye movement experts. We analyzed horizon-
tal and vertical eye movements independently. The physical
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TABLE Il
COHEN’S xk EVALUATED ON ANNOTATED EYE MOVEMENT DATA
Fixations Saccades PSOs SPEMs Blinks

Algorithm Images Dots Videos Images Dots Videos Images Dots Videos Dots Videos Images Dots Videos
MBSDC 0.79 0.39 0.35 0.87 0.77 0.83 0.65 0.48 0.63 0.58 0.36 0.88 0.65 0.90
IVT 0.67 0.03 0.13 0.75 0.63 0.76 — — — - — — — -
LNS - — — 0.81 0.75 0.81 0.64 0.59 0.63 - —
NSLR-HMM  0.49 042 0.29 0.72 0.67 0.71 0.52 0.38 0.47 049 0.26 - — —
IRF 0.85 0.91 0.70 — —
Human 0.92 0.84 0.82 0.95 091 0.94 0.88 0.82 0.83

Evaluation of different eye movement classification algorithms. ‘IVT’ with fixed threshold (evaluated in [45]); ‘LNS’: Adaptive threshold algorithm from
[40] (evaluated in [45]); ‘NSLR-HMM'’: Hidden Markov model approach using manually engineered features [12]; ‘IRF’: Supervised classification
algorithm using random forests [13]; ‘Human’: Inter-rater agreement between two eye movement experts [45]. Bold font marks the best-performing
method. Entries are left empty if the evaluation is not provided in the corresponding references and marked with a dash if the algorithm is not able

to perform a specific classification task.

() SPEM [°/s]

Subj. 1
Subj. 2

Amplitude

— — Target

Phase
o
-~

Time [s]

Fig. 9: Top: Estimated SPEM velocity profiles §SPEM (using model (26))
of a trained (Subj. 1) and a naive (Subj. 2) subject both observing the
same moving target as in Fig. 8. Middle and bottom: Amplitude and
phase of the estimated SPEM velocity profiles. Note that the tracking
performance differs strongly between subjects.

signals in the horizontal eye movement recordings are esti-
mated using the first-order hold model (25) with ogpgy = 0.5
N/s2, oppm = 0.8 NI/s, anoise = 0, and agaee = 1. For vertical
eye movements we used the same model as for horizontal
eye movements (see Section III-A and Online Supplementary
Material Fig. S3). After classifying each channel, we merged
the classification according to the following prioritization: 1.
Blinks, 2. Saccades, 3. PSOs, 4. SPEM, 5. Fixations. For
example, if a sample in the horizontal channel is labeled as
a saccade and in the vertical as a fixation, the final class
label is ‘Saccades’. As in [45], we compared the inter-rater
agreement of our classification with the manual annotations
using Cohen’s k; see Table II.

VI. DIsSCUSSION

In the following, we discuss strengths and weaknesses of
the MBSDC approach as well as potential clinical use cases.
a) Signal separation and classification: A novelty of the
MBSDC framework is its ability to separate multi-type eye
movements into their components. This allows for an in-
dependent analysis of saccades, SPEM, and FEM, each of

which can provide valuable biomarkers for a number of
neurological disorders [29]-[31]. For instance, the proposed
SPEM parameters, phase and amplitude (Fig. 9) can be used
to quantify SPEM performance, which is impaired in, e.g.,
schizophrenia [46]. The SPEM accuracy, often measured as
gain in the closed-loop phase, can now be measured in-
stantaneously, and the “time-to-target gain”, e.g., when the
amplitude reaches 95% of the target amplitude, may provide
an alternative latency measure in SPEM trials. Neuromuscular
disorders such as Parkinson’s disease can manifest themselves
via ocular tremor [33]. Hence, the estimated FEM signal
intensity could serve as a quantitative digital biomarker to aid
in differential diagnosis and tracking of disease progression.
The estimated FEM signal is furthermore interesting for the
study of motor commands. As observed in Fig. 8 the FEM
component is stronger during fast SPEM phases, which is
in line with the observation that the noise affecting motor
commands is dependent on the neural signal intensity [44].

Eye movement classification with the MBSDC framework is
fully unsupervised and uses a very rudimentary classification
scheme (Section IV-B.5). Nonetheless it is only slightly worse
than the random forest approach of [13] that is specifically
tailored to the evaluated data set.

b) Estimation of kinematic and neural controller signals: We
observe that the kinematic signals estimated by the MBSDC
approach are more accurate than the ones obtained with
the conventional approach of lowpass filtering and numerical
differentiation. In particular, in the filtering approach finding
a suitable cutoff frequency that does not affect the estimated
peak velocity, but still suppresses noise, is challenging [8]. In
addition, the overlap of SPEM and saccades in the frequency
domain further hampers frequency domain approaches. By
contrast, the MBSDC approach is an adaptive filter with no
inherent cutoff frequency and is therefore able to restore high-
frequency details while suppressing noise (Section V-A.3).

For estimation, saccadic neural controller signals have tradi-
tionally been described by a set of parameters (e.g., pulse start,
height, width and exponential decay rates) that are determined
from isolated saccades [17], [18], [20], [22]. By contrast, the
MBSDC framework does not use such strict modeling assump-
tions and is therefore capable of estimating complex saccadic
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neural controller signal shapes and in particular double pulses
which have also been called “overlapping saccades” [41]. It
remains to be investigated if such consecutive neural pulses are
an artifact of our possibly underconstrained saccade model or
if such consecutive pulses are also present in the pertaining
neurophysiological recordings.

¢) Limitations: The lack of constraints on the saccadic
neural controller signals comes also with limitations: Prior
knowledge on the positive correlation between neural pulse-
widths and pulse-heights [47] during saccades is not encoded
in our model. Encoding this into our model would increase
its physiological realism and in addition might provide the
necessary constraints for estimating jointly the oculomotor
plant parameters and the neural controller signals, e.g., using
suitable EM-updates for the model parameters akin to the
updates in Section IV-A.2. Without constraints, we observe
that due to the flexibility of the saccadic neural controller
signal such joint estimation does not provide satisfactory
results. Being able to estimate plant parameters, however,
would be desirable as the accuracy of the estimated neural
controller signals depends on the validity of the oculomotor
plant parameters, which can be expected to vary to some
degree between subjects [22]. For successful signal separation
and estimation of the kinematic signals though, moderate
model mismatches are unproblematic as they are compensated
by the estimated neural controller signals. A further limitation
is that the MBSDC framework works with a one-dimensional
model and is currently specifically tailored to horizontal eye
movements. A promising extension would be to replace the
oculomotor plant for horizontal eye movements with a 2D [22]
or even a 3D [21] oculomotor model and estimate the neural
controller signals to the two or three muscle pairs jointly.

d) Computational cost: The bulk of the computation is due
to Kalman smoothing. The analysis of a 10 s recording at
1 kHz lasted 20 s using MATLAB 2017a on a MacBook Pro
with an Intel Core i5 processor.

VIlI. CONCLUSION

In this paper we have proposed a model-based eye move-
ment analysis framework. The framework builds on an estab-
lished physiological model for horizontal eye movements [20],
that we have extended by neural controller signals for sac-
cades, SPEM and FEM, and with a measurement model ac-
counting for disturbances such as blinks. To recover kinematic
signals (noise-free eye position, velocity and acceleration), in-
stead of using lowpass filters and numerical differentiation, we
use state and sparse-input estimation techniques in state space
models. In addition to outperforming traditional approaches,
based on lowpass filtering and numerical differentiation, the
proposed framework can estimate additional physical signals
such as forces of the oculomotor muscles and neural controller
signals. By estimating neural controller signals for saccades,
SPEM and FEM, a signal separation is performed in the
neural domain. The separated signals can then be analyzed
independently, which opens up the possibility of analyzing
multi-type eye movements as commonly encountered in free-
viewing conditions. By making the code open source, we hope

that the MBSDC framework will be useful for diverse eye
movement analysis tasks.

APPENDIX

Here, we provide the theoretical background of the MBSDC
framework. We cover state space models, inference algorithms
such as Kalman smoothing and its generalization Gaussian
message passing, as well as parameter learning algorithms,
in particular the EM algorithm and its role in sparse input
estimation. To describe the models and algorithms we use a
type of probabilistic graphical model called a factor graph [23].

A. Probabilistic Formulation of State Space Models

We consider linear time-invariant SSMs of the form

Xi =AXp_1+BU,+ W, (55)
Y, =CXy + Zs, (56)
with k = 1,..., L. For Gaussian inputs U, initial state X,

and state and observation noise, W and Z, the SSM (55)—(56)
is linear Gaussian with a joint density that factorizes as

L
p(y. z,u) = p(xo) [ [ pwslzr)p(eelzr—r, wn)plur) — (57)
k=1 ;
~ Nzl Zx,) - (T[22

k=1

-N((Ek|A.’Ek,1 + Buy, Ew) N(ukmUk,ZUk)) .(58)

This density is represented by the factor graph in Fig. 10.

B. Inference in SSMs — Gaussian Message Passing

In linear Gaussian SSMs, inference, i.e., the computation of
the posterior distributions
(59
(60)

p($k|y) = N($k|mxk, VX}c)
p(urly) = N (ur|mu,, Vi),

amounts to the computation of the mean vectors and co-
variance matrices of X and Ujy. These can be obtained by
Gaussian message passing [23]. In the forward pass (Kalman
filtering) we compute the quantities

mx, = Amx; | + Buy, (61)
Vx, = AV, A"+ BSy, B + S (62)
G = (Sz + CVy, CT) ! (63)
F,=1-Vx,C"G,C (64)
— — g T —
mx: = Mmx, + VXkC Gk(yk — Cka) (65)
— —
Vx; = FiVx,, (66)
for k = 1,...,L, with initializations 7x; = px, and

-
Vx; = Xx,. The right-pointing arrows on top of the Gaussian
message parameters (mean vectors and covariance matrices)
refer to the fact that these are summary statistics from the
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Fig. 10: Factor graph of the SSM (55)—(56). Dashed box: Forward
mean r_’nX,; (65) and covariance V. (66) of the Gaussian distribution

p(x)|y1,...,yx) obtained by integrgting over all variables inside the
dashed box [23]. The black square represents an observed variable.

left-side of the factor graph in Fig. 10. In the backward pass
(Kalman smoothing) we compute [24]

€x, = FlAéx, ., — C"Gy(ys — Ciix,)
WXk = F;ATWXkJrlAFk +C'GC,

(67)
(68)

for k = L,...,0, with 5XN+1 and WXN+1 initialized to all
zeros, Fy = I, and Gy = 0. The means and variances are

—> g ~

— ~ —
Vx, = Vx, (I - Wx, VXk) (70)
my, = pu, — 2, B'éx, (71)
Vu, = Zu, - BTWXkBEUk). (72)

Note that (67)—-(70) correspond to the (Modified-Bryson-
Frazier) Kalman smoother updates, and (71)-(72) is an aug-
mentation of this smoother to input estimation [24].

C. Learning SSM Parameters with the EM Algorithm

Learning refers to the task of estimating unknown parame-
ters ©, e.g., by the maximum a posteriori estimation

6= argmax p(O]y) = argmaxlog(p(y|©)p(®)). (73)
In SSMs, this maximization can be performed with an EM

algorithm [48] with X and U as latent variables. The M-step
of the EM algorithm is

O™ = argmax E[log p(y, X, U|©)] + log p(©), (74)
€]

where the expectation is_taken w.r.t. the posterior over the
latent variables p(z, uly, ©°9). Using (58) we obtain

Ellogp(y, X, U|©)]

__;(iE

k=1

>
log [2732] + [lyx — C Xkl -1 +log [27 Xy |

+ Xk = AXpo1 = BUk5o1 + log 1270, | + |Uk||;U1D
k

1
- 5 (ENX0I3 ]+ tog 2nzi, ) a5)
Xo

where ||z]|3 £ 2"Ax and |A| denotes the determinant of

A. The second moments of Xy and Uy in (75) are readily
obtained from the posterior means and variances (69)—(72).
The second moments in (44) and (46) are

E[UZly, 0] = Vi, +mi), (76)
EZily, ©] = vi — 2y Cmx, + C(Vx, +mx,mk, )C (T7)

D. Modeling and Estimation of Sparse Inputs

In a probabilistic setting, sparse variables U = (Uy,...,UL)
are modeled with sparsity-promoting priors
L
p(u) = [ plur), (78)
k=1

which in the sparse Bayesian learning (SBL) framework [36]
are represented via the hierarchical representation [37]

plug) = sup N(ugl0,07)p(o%), (79)
O'kZO

with a suitable hyperprior p(o)). Note that essentially all

sparsity promoting priors (Laplace, Student-t, ...) can be

represented this way [36]. In SBL, instead of estimating U =

(Uy,...,Ur) directly, we first estimate 0 = (oy,...,0n) for
marginalized-out U, i.e.,
o = argmax p(oly), (80)
and then obtain an estimate of U by
u=E[Uly,0a]. (81)

Note that (80) is a learning problem of the form (73) and can
be solved by EM (Appendix C). In our MBSDC framework
in (79) we use the hyperprior

plok|a, B) o< o, “ exp(—=S/o). (82)

In Appendix E we discuss how to choose the hyperparameters
a>0and 8 >0.

E. Relevant Parameters in the MBSDC Framework

In the following we discuss the most relevant parameters.

a) Observation noise estimation: The observation noise
level onoise controls the trade-off between model-fit and regu-
larization. The maximum a posteriori estimate of oNoise 1S Ob-
tained by an EM-algorithm. The hyperparameter anoise in (46)
controls the prior on onoise, Where anoise = 0 corresponds to
maximum-likelihood estimation, and aneise > O introduces a
bias towards smaller values of onoise.

b) Sparse input estimation: The sparsity of U5 and
are controlled by s, and apjnk. Larger values of these
parameters result in sparser estimates. We used values between
0.3 and 1 for ag,ec, and between 6 and 10 for ajink. The pa-
rameters [sacc and Sgjnk control the number of EM-iterations
and are chosen to be small (e.g., Bsacc = Priink = 107°). To
achieve true sparsity, we set all variances below 20 - Ss,cc (and
20 - Beiink, respectively) to zero.

¢) SPEM estimation: The variance o2pgy of the Gaussian
prior on the SPEM input signal USPEM in (1) determines how
quickly the SPEM signal YSPEM is allowed to change. We used
values between ospgpy = 0 N/s? (no SPEM) and 1 N/s2.

UBlink
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d) FEM estimation: The FEM input variance o2y, should

be adapted to the expected amount of FEM in the data. We
used values between oggy = 0 N/s and 1 N/s. For too small
values, FEMs in the data might be explained by the saccade
neural controller signal and for too large values, small saccades
might be missed and explained by the FEM signal.
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Fig. S1: Single vs double pulses in estimated saccadic neural controller signals. (a) and (c): Estimation
of physical signals (position, velocity, and neural controller signals) for two horizontal saccades during SPEM; data
from [1]. Estimation using the parameters ospem = 1 N/s?, orpm = 0.2 N/s, anoise = 0.5, and aigace = 0.5, results
in two consecutive pulses in the recovered saccadic neural controller signal AN , as described in Section V-A.2 and
Fig. 5 in the paper. (b) and (d): Using the same recordings as in (a) and (c), respectively, but increasing the
sparsity of the saccadic controller signal AN by choosing a larger asacc, €.8., QSacc = 2, results in the estimation
of a single neural pulse. Therefore, the estimated velocity profile does not display the bimodal shape seen in the
estimation with agaec = 0.5. In [2], however, saccades with the described morphology, denoted by “overlapping
saccades”, have been observed and are believed to be linked to fatigue. Nonetheless it is important to note that
such unusual saccade shapes might be due to noise in the recording or due to model mismatches. Therefore, further
investigations, in particular with neurophysiological recordings at hand, are required.
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Fig. S2: Estimated main sequences in real data. Saccade amplitude vs. peak-velocity (top) and amplitude vs.
duration (bottom) main sequences obtained by the MBSDC framework from two subjects observing a sinusoidally
moving target (dataset from [1], described in Section V-B). For the estimation we used the same parameters as in
Figs. Sla and Slc. The peak-velocity (marked by x in Fig. S1) is the maximal magnitude of the estimated saccadic

velocity profile Osace (i.e., the SPEM- and FEM-velocity contributions have been subtracted from the estimated
total velocity 6). Following [3], we fitted the exponential model

Peak velocity = K - (1 — e~ lAmplitude|/L)
to the peak-velocity main sequences and the linear model
Duration = a; - |Amplitude| + ay,
to the duration main sequences. Note that even though our model does not explicitly incorporate the main sequence

(neither does the lowpass filtering approach), the MBSDC framework is still able to recover the characteristic main
sequence relations from the data.
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Fig. S3: Estimation of vertical eye movements using the 1D horizontal model. Example SPEM recording
from the ‘Dots’-dataset described in [4] that we used for assessing the classification performance of the MBSD
approach in Section V-D. Here, the subject observed a dot moving vertically with a constant velocity. The figure
shows the recording of the vertical eye position along with the estimated and separated physical signals. Although
our model is tailored to horizontal eye movements, it is still able to estimate and separate the different eye movements
in the vertical eye position data (see Sections V-D and III-A). Moreover, this recording shows also the interpolation
of a blink (lasting from time 1.7 s to 2 s) by our model, as described in Section IV-B.3.
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