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OBJECTIVE  In the search for a reliable, cooperation-independent, noninvasive alternative to invasive intracranial pres-
sure (ICP) monitoring in children, various approaches have been proposed, but at the present time none are capable of 
providing fully automated, real-time, calibration-free, continuous and accurate ICP estimates. The authors investigated 
the feasibility and validity of simultaneously monitored arterial blood pressure (ABP) and middle cerebral artery (MCA) 
cerebral blood flow velocity (CBFV) waveforms to derive noninvasive ICP (nICP) estimates.
METHODS  Invasive ICP and ABP recordings were collected from 12 pediatric and young adult patients (aged 2–25 
years) undergoing such monitoring as part of routine clinical care. Additionally, simultaneous transcranial Doppler (TCD) 
ultrasonography–based MCA CBFV waveform measurements were performed at the bedside in dedicated data collec-
tion sessions. The ABP and MCA CBFV waveforms were analyzed in the context of a mathematical model, linking them 
to the cerebral vasculature’s biophysical properties and ICP. The authors developed and automated a waveform prepro-
cessing, signal-quality evaluation, and waveform-synchronization “pipeline” in order to test and objectively validate the 
algorithm’s performance. To generate one nICP estimate, 60 beats of ABP and MCA CBFV waveform data were ana-
lyzed. Moving the 60-beat data window forward by one beat at a time (overlapping data windows) resulted in 39,480 ICP-
to-nICP comparisons across a total of 44 data-collection sessions (studies). Moving the 60-beat data window forward by 
60 beats at a time (nonoverlapping data windows) resulted in 722 paired ICP-to-nICP comparisons.
RESULTS  Greater than 80% of all nICP estimates fell within ± 7 mm Hg of the reference measurement. Overall perfor-
mance in the nonoverlapping data window approach gave a mean error (bias) of 1.0 mm Hg, standard deviation of the 
error (precision) of 5.1 mm Hg, and root-mean-square error of 5.2 mm Hg. The associated mean and median absolute 
errors were 4.2 mm Hg and 3.3 mm Hg, respectively. These results were contingent on ensuring adequate ABP and 
CBFV signal quality and required accurate hydrostatic pressure correction of the measured ABP waveform in relation 
to the elevation of the external auditory meatus. Notably, the procedure had no failed attempts at data collection, and all 
patients had adequate TCD data from at least one hemisphere. Last, an analysis of using study-by-study averaged nICP 
estimates to detect a measured ICP > 15 mm Hg resulted in an area under the receiver operating characteristic curve of 
0.83, with a sensitivity of 71% and specificity of 86% for a detection threshold of nICP = 15 mm Hg.
CONCLUSIONS  This nICP estimation algorithm, based on ABP and bedside TCD CBFV waveform measurements, 
performs in a manner comparable to invasive ICP monitoring. These findings open the possibility for rational, point-of-
care treatment decisions in pediatric patients with suspected raised ICP undergoing intensive care.
https://thejns.org/doi/abs/10.3171/2019.5.PEDS19178
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Invasive intracranial pressure (ICP) monitoring is used 
to direct medical interventions that target the develop-
ment and consequences of elevated intracranial pres-

sure (ICP) related to severe traumatic brain injury (TBI) 
and other etiologies such as late sequelae of craniosynos-
tosis, metabolic disorders, and selected causes of encepha-
lopathy.10,11 However, significant regional variation exists 
in the use of invasive ICP monitoring. In children with 
moderate TBI, management often occurs without the ben-
efit of ICP monitoring.2,3 Historically, various initial ICP 
target values have been used to guide treatment, from less 
than 15 mm Hg, to less than 20 mm Hg, or even less than 
25 mm Hg.10 Use of cerebral perfusion pressure to guide 
care also requires knowledge of ICP. Recently, it has been 
suggested that noninvasive ultrasound measurement of the 
optic nerve sheath diameter may be used to identify and 
monitor elevated ICP. However, such measurements are 
neither suitable for continuous real-time monitoring nor 
are they able to provide absolute ICP.16

In this report, we present a fully automated biomedi-
cal modeling and signal processing approach to estimate 
ICP that has applicability in neurosurgical practice. ICP 
is estimated noninvasively from transcranial Doppler 
(TCD) ultrasound measurements of the middle cerebral 
artery (MCA) cerebral blood flow velocity (CBFV) and 
invasive radial arterial blood pressure (ABP). CBFV 
measurements are routinely performed in most tertiary 
pediatric hospitals that typically care for children with 
neurological diseases who might require ICP monitoring. 
Here, we first demonstrate the feasibility of automated 
signal-quality evaluation, waveform synchronization, and 
noninvasive ICP (nICP) estimation. Then, by evaluating 
the accuracy and precision in 12 pediatric patients un-
dergoing invasive ICP monitoring, we demonstrate that 
the model-based algorithm for real-time, continuous, and 
noninvasive ICP estimation performs in a manner compa-
rable to invasive monitoring in children. Importantly, this 
technique does not require comparison to a standardized 
population norm, which makes it particularly suitable for 
complex children who would benefit from patient-specific 
ICP monitoring.

Methods
ICP Estimation

To estimate ICP, we used a previously developed mech-
anistic model that links simultaneously acquired ABP and 
CBFV waveform measurements to ICP and the biophysi-
cal properties of the cerebrospinal and cerebrovascular 
systems (Fig. 1A).9 The biophysical properties of a major 
cerebrovascular territory and surrounding brain tissue are 
represented by a single compliance and a single resistive 
element. The compliance element C captures the aggre-
gate elastic properties of the MCA and surrounding brain 
tissue. The resistance element R represents the aggregate 
cerebrovascular resistance to blood flow through the vas-
cular territory. The model imposes a mathematical con-
straint on the relationship between the input waveforms 
(ABP and CBFV) on the one hand, and the model param-
eters (R, C, and ICP) on the other (see Supplementary Ma-
terial for details).9 We defined an “estimation window” as 

60 consecutive beats of ABP and CBFV waveform data 
and leveraged the constraint implied by the model in Fig. 
1A to produce one estimate of R, C, and ICP for each 60-
beat estimation window.

Clinical Study Protocol and Data Collection
Our study protocol was approved by the institutional 

review boards at Boston Children’s Hospital and the Mas-

FIG. 1. A: Model-based representation of cerebrovascular physiology 
for nICP estimation. B: Available bedside measurements in intensive 
care. C: Simulated data-acquisition setup used in the critical care setting 
at Boston Children’s Hospital. Anatomical drawings in panels A and B, 
copyright Sara Jarret, CMI, Atlas InMedia. Published with permission.
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sachusetts Institute of Technology. Informed consent and 
assent (when appropriate) were obtained from the patient 
or their legally authorized representatives. Clinical data 
collection occurred in the medical and surgical intensive 
care unit at Boston Children’s Hospital from February 
2015 to June 2017.

Data collection occurred up to twice daily during dedi-
cated bedside recording sessions for the duration that inva-
sive ICP and ABP monitoring were indicated for clinical 
management. Both waveforms were recorded by MP-90 
bedside monitors (Philips Healthcare). The ICP trans-
ducers were referenced to the level of the tragus, while 
the ABP transducers were referenced to the level of the 
heart. Right and left MCA CBFV waveform recordings 
were performed using the ST3 TCD ultrasound system 
(Spencer Technologies) and conducted by members of the 
study team experienced and credentialed in TCD ultraso-
nography (K.L.L.) or those having undergone proctored 
hands-on TCD training sessions (F.W.V., B.K.W.). The si-
multaneously acquired ABP, ICP, and CBFV waveforms 
were streamed digitally, nominally at 125 samples/sec, to 
a Moberg Component Neuromonitoring System (Moberg 
Research) for archiving (Fig. 1C). During each data acqui-
sition session, we also recorded the patient’s most recent 
Glasgow Coma Scale (GCS) score and the most recent 
hematocrit value. Additionally, we performed bedside 
measurements of the vertical height of the pressure trans-
ducers. For each patient, we also recorded demographic 
data (patient age, sex, race, and ethnicity) and clinical in-
formation (etiology of encephalopathy, anatomical loca-
tion of injury if focal rather than generalized, and type 
and location of invasive ICP sensor). Recordings were de-
identified, and nICP estimation was performed in a man-
ner blinded to the measured ICP.

Signal Processing Pipeline
Our estimation approach relies on a model-based 

analysis of synchronized ABP and MCA CBFV wave-
form measurements. The quality of the nICP estimates 
critically depends on 2 aspects of the collected ABP and 
CBFV waveforms: their signal quality and the time align-
ment between the 2 waveforms. To achieve robust and re-
liable nICP estimation, we developed a fully automated 
signal preprocessing pipeline consisting of 5 major steps 
(described in detail below): 1) coarse signal quality assess-
ment (SQA), 2) data batch selection, 3) fine SQA on select-
ed data batches, 4) final data segment selection for nICP 
estimation (Fig. 2), and 5) waveform synchronization and 
beat-onset alignment.

Step 1: Coarse Signal Quality Assessment
During coarse SQA, the algorithm identifies regions 

of the ABP and CBFV signals with nonphysiological 
amplitudes (Fig. 2A and D). For the ABP waveform, we 
performed beat-onset detection and identified any beat 
containing a sample with an amplitude value above 300 
mm Hg or below 20 mm Hg.23 Additionally, we identified 
any beat with a pulse pressure less than 20 mm Hg. For 
the CBFV waveform, we identified any beat containing a 
sample value above 300 cm/sec or less than 20 cm/sec. To 
prevent the rejection of long stretches of data on the basis 

of brief artifacts or short noisy segments, we only rejected 
flagged regions of data longer than 3 seconds in duration.

Step 2: Data Batch Selection
Based on pilot analyses, a priori we defined a data 

batch as a continuous period of 30 beats or longer over 
which ABP or CBFV sample values contained less than 
3 seconds of data rejected by coarse SQA filtering (Fig. 
2B and E).

Step 3: Fine Signal Quality Assessment
Following the identification of selected data batches, 

the algorithm performed more detailed SQA by evaluat-
ing morphological characteristics of the ABP and CBFV 
waveforms (see Supplementary Material for details).6,21 
Briefly, we evaluated the beat-by-beat ABP waveform 
quality by first computing, for each beat, the mean abso-
lute sample-by-sample difference. We then normalized 
the resultant difference metric for each individual beat by 
a running average of the past mean absolute differences. 
This metric assumes large values in regions in which the 
waveform morphology is corrupted by noise and artifact. 
The beat-by-beat CBFV signal quality was determined 
by first computing the spectral correlation between the 
ABP and CBFV signals over a sliding window of 8 sec-
onds in duration and then quantifying the deviation of 
each CBFV wavelet from an adaptively updated wavelet 
template (see Supplementary Material).21 CBFV wavelets 
with large normalized mean-square errors in comparison 
with the template waveform were flagged for rejection. In 
a final postprocessing step, regions of the input data were 
deemed unacceptable if either the ABP wavelet or the cor-
responding CBFV wavelet had been flagged for rejection 
by fine SQA filtering (Supplemental Figure S1).

Step 4: Data Segment Selection
We defined data segments as continuous stretches of 

input data that were retained after coarse and fine SQA 
(Fig. 2C and F).

Step 5: Waveform Synchronization and Beat Alignment
In order to achieve fully automated, calibration-free 

nICP estimation, we required synchronization and beat 
alignment of the ABP, ICP, and CBFV waveforms for 3 
main reasons. First, since the ABP and CBFV waveforms 
are acquired by different bedside devices with unsynchro-
nized internal clocks and streamed digitally to our data 
acquisition system, slight deviations in clock frequencies 
from their respective nominal, manufacturer-specified 
values lead, cumulatively over time, to significant drift 
(de-synchronization) between the two waveforms (Fig. 
3A–C). Second, each monitoring device performs its own 
internal signal processing steps that lead to an unknown 
delay between the time a physiological change registers 
at the device’s sensor and the corresponding appearance 
of the measured change in the device’s output channel. 
Third, our nICP estimation algorithm assumes ABP mea-
sured at the MCA, rather than ABP measured peripher-
ally. Since MCA ABP waveform measurements are not 
available, we needed to shift the measured ABP waveform 
from the radial artery in time relative to the MCA CBFV 

https://thejns.org/doi/suppl/10.3171/2019.5.PEDS19178
https://thejns.org/doi/suppl/10.3171/2019.5.PEDS19178
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waveform, such that their phase relationship approximates 
that between the MCA ABP and CBFV.

To correct the waveform drift introduced by the (un-
known but inevitable) deviations of the clock speeds of 
the Philips bedside monitor and the Spencer TCD system 
from their respective nominal values, we first aligned the 
waveform samples by sample number. The time stamp for 
each sample was then renormalized based on a common 
nominal sampling frequency of 125 samples/sec. We then 
determined the beat-onset series n(i) and m(i) for ABP 
and CBFV, respectively; and computed the resulting beat-
by-beat phase lag τi = m(i) - n(i) between the two wave-
forms as a function of renormalized time (Fig. 3A and B). 

Plotting the phase lag series τi against renormalized time 
demonstrates the linear nature of the phase drift (Fig. 3C), 
which is indicative of 2 stable clocks that operate at slight-
ly different frequencies. Our automated pipeline compen-
sates for this linear waveform desynchronization by fitting 
a first-order (linear) regression model ( (t) = α × t + β) in 
a least-squares manner. We adjusted the time vector for 
the CBFV samples according to tnew = t(1 - ), where  is 
the least-squares estimate of the slope parameter a from 
the linear regression analysis. The resultant time series [t, ABP] of the collected ABP waveform and the adjusted 
CBFV time series [tnew, CBFV] are thus synchronized 
along a shared, common time axis with zero-mean phase 

FIG. 2. A and D: Coarse SQA for rejection of unphysiological data regions. B and E: Batch selection and fine SQA for rejection 
of individual ABP and CBFV beats of insufficient waveform quality. C and F: Final data segment selection for ICP estimation after 
coarse and fine SQA. G–I: Associated bedside data recording statistics before (G) and after (H) coarse and fine (I) SQA.
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drift (Fig. 3E–G), although corresponding beats might not 
necessarily be aligned.

In order to quantify and compensate for a possible de-
lay between the registered waveforms, the preprocessing 
pipeline estimates the shift required to align the onsets of 
corresponding beats of the ABP and CBFV waveforms. 

The required shift is determined as the time lag of the 
dominant peak of the cross-correlation between the two 
waveforms (Supplemental Figure S2). The delay is com-
puted once for each recording session and subtracted from 
the CBFV time stamps to beat-align the CBFV and ABP 
waveform signals.

FIG. 3. A: Phase relationship between ABP and CBFV waveforms at the beginning of the recording session. B: After 10 minutes of 
recording, the phase difference has increased significantly due to the inevitable timing differences between the clocks of the ABP 
monitor and TCD system. C: The phase lag increases linearly with recording duration. D: ICP estimation without ABP and CBFV 
waveform synchronization, resulting in complete failure of ICP estimation within 40 seconds. E–G: Phase relationship between 
ABP and CBFV waveforms after waveform synchronization and beat-onset alignment (E and F) indicating zero-mean phase drift 
over time (G). H: ICP estimation and measured mean ICP after post hoc waveform synchronization and beat-onset alignment.

https://thejns.org/doi/suppl/10.3171/2019.5.PEDS19178
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Mean ABP Correction
Our model assumes ABP measurements referenced to 

the level of the MCA. We therefore performed a hydrostat-
ic pressure correction of the ABP waveform to compen-
sate for the fact that the measured ABP was referenced to 
the level of the heart, rather than the MCA. We estimated 
the difference in mean pressure by determining the hydro-
static pressure (ρ × g × h) of a theoretical column of blood 
between the two transducer locations. We estimated the 
blood density (r) on the basis of the patient’s most recent 
hematocrit measurement and the regression analysis by 
Hinghofer-Szalkay et al.8 We also evaluated the magnitude 
of the effect of using patient-specific hematocrit measure-
ments on the nICP estimates versus an assumed value for 
the blood density of 1.06 g/ml. We determined “h” during 
every recording session by measuring the difference be-
tween the vertical heights of the ABP and ICP transducer 
locations. Finally, we subtracted the estimated hydrostatic 
pressure offset from the measured ABP waveform to ar-
rive at our estimated MCA ABP waveform. Next, we ap-
plied a bandpass filter with cutoff frequencies at 0.5 and 12 
Hz to the ABP and CBFV waveforms before proceeding 
to nICP estimation.

Statistical Analysis
We quantified the performance of our nICP estimation 

by computing the mean error (bias or accuracy) between 
the nICP and the mean of the invasively measured ICP 
waveform for corresponding 60-beat data windows. We 
also calculated the associated standard deviation of the 
error (SDE or precision), and computed the root-mean-
square error (RMSE) between nICP estimates and ICP 
measurements as an aggregate measure of estimation per-
formance.20

In one analysis approach, the estimation results were 
computed for sliding (overlapping) data windows in which 
the 60-beat estimation window was advanced one beat at 
a time to give beat-by-beat nICP estimates. In an alterna-
tive approach, the nICP estimates were computed on hop-
ping (nonoverlapping) estimation windows in which the 
data windows were advanced by a full frame of 60 beats. 
The hopping-window estimation approach results in one 
nICP update every half to full minute, depending on the 
patient’s mean heart rate. We also averaged the window-
by-window nICP estimates for each recording session and 
for each patient to obtain the per-session and per-patient 
bias, SDE, and RMSE.

We quantified the performance of detecting elevated 
ICP by computing the sensitivity and specificity of detect-
ing a mean measured ICP value above 15 mm Hg (approx-
imately 20 cm H2O) on the basis of nICP > 15 mm Hg. 
By sweeping the nICP threshold from 0 to 30 mm Hg, we 
obtained the full receiver operating characteristic (ROC) 
and determined the area under the ROC curve (AUC). Dif-
ferences in the distributions of the estimation errors were 
tested for statistical significance using the Wilcoxon rank-
sum test with the significance level set to 0.05.20

Data Availability
The data collected in this study will be made available 

through PhysioNet (physionet.org), not least because there 
has been much interest in nICP estimation over the past 2 
decades.4

Results
Patient Cohort

The study cohort comprised 12 patients (9 males and 
3 females), with a median age of 11 years (IQR 6.5–17.0 
years), median GCS score 7 (IQR 3–13), and a variety of 
pathologies necessitating invasive ICP monitoring (cerebro-
vascular disorder, 4; brain mass or neurosurgical problem, 
4; severe TBI, 3; metabolic abnormality, 1). We succeeded 
in acquiring unilateral CBFV recordings in all patients. We 
were unable to obtain bilateral recordings in 3 patients be-
cause of recent surgery, lack of scalp integrity, or problems 
that limited placement of the TCD probe in the temporal 
region. The mean measured ICP in our study cohort ranged 
from 1.4 to 23.9 mm Hg (IQR 8.0–13.4 mm Hg).

Signal-Quality Assessment
The majority of periods rejected by our coarse SQA 

filter were due to movement artifact when acquiring the 
CBFV signal (Fig. 2D). After coarse SQA and associated 
batch selection, the fine SQA (Fig. 2B, E, and F; Supple-
mental Figure S1) resulted in final data-segment selection 
for nICP estimation (Fig. 2I) of 10 hours and 9 minutes 
across 44 study sessions, with a mean uninterrupted seg-
ment duration of 4 minutes and 37 seconds.

Waveform Synchronization and Beat-Alignment
The drift between the ABP and CBFV waveforms was 

approximately 400 msec per 1000 seconds of recording 
duration (Fig. 3C). The least-squares regression approach 
to compensate for this waveform drift (de-synchroniza-
tion) resulted in a zero-mean phase drift between the ABP 
and CBFV waveforms for each recording (Fig. 3G). The 
median shift (delay) required to align the ABP and CBFV 
beat onsets was -66 samples (IQR -89 to -40 samples). 
The corrections for drift and delay are essential; nICP es-
timation on the de-synchronized waveforms without these 
corrections resulted in complete failure of our estimation 
approach (Fig. 3D), while nICP estimation on synchro-
nized and beat-aligned recordings resulted in physiologi-
cally credible results (Fig. 3H).

ABP Correction
The median measured vertical distance, h, between 

the ICP and ABP transducers across sessions was 11.0 
cm (IQR 6.0–21.3 cm). The median hematocrit value was 
30.4% (IQR 25.5–33.0%). The calculated median pressure 
difference thus determined was 8.5 mm Hg (IQR 4.5–16.0 
mm Hg).

Estimation Performance
We performed our nICP estimation on windows of 60 

consecutive beats from the data segments that were select-
ed by our signal preprocessing pipeline (Fig. 2). Across the 
44 studies, the sliding-window approach resulted in 39,480 
nICP-to-ICP comparisons, while the hopping-window ap-
proach produced 722 such comparisons.

https://thejns.org/doi/suppl/10.3171/2019.5.PEDS19178
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Figures 4A and 4B show examples of the measured ICP 
waveform, the beat-by-beat averages of the ICP waveform, 
and our model-based nICP estimates obtained on sliding 
(overlapping) and hopping (nonoverlapping) estimation 
windows during episodes of normal and elevated ICP. In 

the normal ICP example (Fig. 4A), for the estimation ap-
proach using hopping data windows, the bias and SDE are 
-0.9 mm Hg and 0.5 mm Hg, respectively, with an associ-
ated RMSE of 1.0 mm Hg. Likewise, the bias, SDE, and 
RMSE for the example of elevated ICP (Fig. 4B) are 1.4 

FIG. 4. A and B: ICP waveforms (light blue), beat-by-beat mean measured ICP (dark blue line), and estimated mean nICP on 
a sliding (overlapping) window (red line) and hopping (nonoverlapping) data windows (red open circles) in a patient while ICP is 
normal (A) and during an episode of elevated ICP (B). C–H: Summary statistics and analysis of nICP estimates by Bland-Altman 
analysis (C, E, and G) and distribution of window-by-window absolute estimation error (D) and mean absolute errors (F and H). 
C and D: Analysis of 722 hopping window-by-window nICP estimates. E and F: Analysis of 44 study-by-study nICP estimates. 
G and H: Analysis of 12 patient-by-patient nICP estimates. AE = absolute error.
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mm Hg, 1.0 mm Hg, and 1.8 mm Hg, respectively. The 
sliding-window approach produced essentially the same 
error statistics.

The overall estimation performance is summarized 
in Bland-Altman1 plots (Fig. 4C, E, and G) that display 
the estimation error (nICP - ICP) against the average of 
nICP and measured ICP for paired nICP-to-ICP compari-
sons. For these comparisons, the nICP estimate and the 
corresponding mean of the measured ICP waveform are 
computed over the same estimation window. Across all 
722 comparisons of the hopping data window approach, 
we obtained an overall bias of 1.0 mm Hg, SDE of 5.1 
mm Hg, and RMSE of 5.2 mm Hg (Fig. 4C). The asso-
ciated mean absolute error (MAE) and median absolute 
error (MedAE) are 4.2 mm Hg and 3.3 mm Hg, respec-
tively. When we averaged all nonoverlapping window-by-
window nICP estimates for each of the recording sessions, 
we obtained a bias of 0.4 mm Hg, SDE of 4.3 mm Hg, and 
RMSE of 4.3 mm Hg across all 44 studies, with MAE 
and MedAE of 3.5 and 2.9 mm Hg, respectively (Fig. 4E). 
Averaging all nICP estimates for each patient resulted in 
a bias of 0.2 mm Hg, SDE of 3.6 mm Hg, and RMSE of 
3.6 mm Hg, with MAE and MedAE of 3.1 mm Hg and 
2.5 mm Hg, respectively (Fig. 4G). The nICP estimation 
using the sliding-window approach resulted in essentially 
the same performance for the window-by-window (Table 
1), study-by-study, and patient-by-patient comparisons.

An additional perspective on the performance of our 
nICP estimation is provided by examining the distribution 
of the absolute errors for the window-by-window (Fig. 4D) 
and the MAEs for the study-by-study (Fig. 4F) and patient-
by-patient (Fig. 4H) analyses. For the window-by-window 
and study-by-study estimation approaches, ≥ 80% of all 
nICP estimates fall within ± 7 mm Hg and ± 6 mm Hg of 
the reference measurement, respectively. For 9 of 12 sub-
jects, the MAE is 5 mm Hg or less, and all subjects have a 
MAE of less than 7 mm Hg.

When we performed the hydrostatic pressure cor-

rection with a nominal value of 1.06 g/ml for the blood 
density r, the estimation results for hopping and sliding 
windows remained essentially the same, indicating that 
the measured variations in hematocrit have negligible ef-
fect on the performance of our nICP estimation (Table 1). 
When we did not apply the hydrostatic pressure correc-
tion to the ABP waveform, however, the bias, SDE, and 
RMSE increased to 4.1 mm Hg, 5.6 mm Hg, and 6.9 mm 
Hg, respectively, indicating that the hydrostatic pressure 
correction of the measured ABP waveform is critically 
important for obtaining clinically meaningful estimation 
results. Omitting the fine signal quality assessment (step 
3 in our signal processing pipeline) to reject beats of poor 
ABP or CBFV waveform morphology, likewise resulted 
in unacceptably large errors. Formal statistical analysis of 
the error distributions associated with each variation in the 
preprocessing strategy demonstrated that accounting for 
patient-specific hematocrit did not lead to statistically sig-
nificantly different results from our baseline model (Table 
1). By contrast, foregoing the hydrostatic ABP correction 
and/or fine SQA significantly increased the error, demon-
strating that these steps are essential (Table 1).

We also explored whether the algorithm could correctly 
classify elevated ICP, defined here as mean measured ICP 
> 15 mm Hg (approximately 20 cm H2O). When using an 
estimated nICP of 15 mm Hg as a threshold for classifica-
tion, we obtained a sensitivity of 74% and specificity of 
77% for detection of elevated ICP. By varying the nICP 
threshold from 0 mm Hg to 30 mm Hg, we obtained the 
full ROC curve, with the definition of elevated ICP being 
mean measured ICP > 15 mm Hg. Performing this analy-
sis on all 722 nonoverlapping nICP-to-ICP comparisons, 
we obtained an AUC of 0.79 (Fig. 5). When we performed 
the same analysis on the study-by-study averaged estima-
tion results, we obtained an AUC of 0.83, and a sensitivity 
of 71% and a specificity of 86% for the nICP threshold of 
15 mm Hg. The study-by-study sensitivity and specificity 
resulted in a positive likelihood ratio value of 5.1, suggest-

TABLE 1. Comparison of nICP estimation results under variations in signal preprocessing 
Estimation Window Approach

Sliding Nonoverlapping
Baseline 

Model
Baseline 

Model
Nominal Blood 

Density
w/o HP 

Correction
w/o Fine 

SQA
w/o HP Correction  

& Fine SQA

No. of comparisons 39,480 722 722 722 1286 1286
Bias (mm Hg) 1.05 0.97 0.96 4.10 -0.24 2.93
Median error (mm Hg) 1.01 0.83 0.91 4.35* -0.35* 3.43*
SDE (mm Hg) 5.10 5.09 5.09 5.56 9.16 9.45
RMSE (mm Hg) 5.20 5.18 5.18 6.91 9.16 9.90
MAE (mm Hg) 4.16 4.15 4.16 5.63 6.24 7.30
MedAE (mm Hg) 3.32 3.32 3.31 4.98 4.05 5.33

HP = hydrostatic pressure.
The first 2 columns summarize the estimation performance using the baseline model with full signal preprocessing pipeline as well as the HP 
correction of ABP with subject-specific hematocrit values for r estimation. The third column summarizes the results when a nominal value of 
r = 1.06 g/ml is used for the blood density. The fourth column shows the estimation results obtained without accounting for the difference in 
HP between peripheral ABP and MCA ABP. The fifth column summarizes the estimation results if we forgo the fine SQA of the ABP and CBFV 
waveforms. The final column shows the results if we do not account for HP correction and fine SQA.
* Statistically significant differences in the median estimation error compared with the baseline model (p < 0.05).
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ing a moderate posttest increase in the probability of el-
evated ICP if nICP is > 15 mm Hg.7 Likewise, the negative 
likelihood ratio value is 0.33, suggesting a moderate post-
test decrease in the probability of elevated ICP if nICP < 
15 mm Hg.

Finally, we assessed the risk of misclassifying patients 
on the basis of the nICP estimates. To do this, we com-
puted the (empirical) probability of observing a measured 
mean ICP > 15 mm Hg, given that the corresponding 
nICP estimate is < 10 mm Hg. For the hopping-window 
approach, that probability was 2.4% in our data set. Like-
wise, the (empirical) probability of observing a mean mea-
sured ICP < 10 mm Hg, given that the corresponding nICP 
estimate is > 15 mm Hg is 13.2%. Thus, the overall chance 
of missing a patient with elevated ICP is only 2.4% if the 
nICP estimates suggest a normal ICP level, while there is 
a mildly greater (13.2%) chance of having falsely declared 
an elevated ICP if the underlying ICP is actually normal.

Real-Time nICP Computation
The signal quality assessment and time-alignment 

pipeline presented here along with all computations neces-
sary for nICP estimation were implemented in MATLAB 
(MathWorks). Execution of all computational steps for a 
60-beat estimation window took 11 msec on a standard 
Intel Core i7 processor with 16 GB of RAM. This dem-
onstrates that the preprocessing and estimation computa-
tions can be performed well within a fraction of a cardiac 
cycle duration. Thus, even the sliding-window estimation 
approach in which ICP estimates are updated every beat 
can be executed in real time.

Discussion
Physicians know how to manage patients with obvious 

clinical signs of elevated ICP, usually when the level is 
greater than 25 mm Hg. In contrast, they do not have clini-
cal signs to guide treatment when the level is in the abnor-
mal range of 15 to 25 mm Hg. Under such circumstanc-
es, one approach that is used in adults in the emergency 
department is to measure optic nerve sheath diameter, 
which gives some indication of whether ICP is elevated 
or not.16 This methodology is not suitable for continuous 
monitoring and does not provide an absolute ICP value. 
In addition, this technique is not patient specific, as the 
ultrasound measurements need to be interpreted with ref-
erence to established population-derived norms. Patient-
specific ICP determination would be a key advancement 
for the care of children with atypical development (e.g., 
craniosynostosis, myelomeningocele, genetic syndromes, 
cardiac defects/malformations) for whom population-de-
rived norms are of questionable relevance and reliability. 
Such “atypical” patients comprise the majority of pedi-
atric patients for whom personalized ICP assessment is 
most needed, apart from the aforementioned patients with 
acute TBI or encephalopathy. Our work here has made 2 
key contributions toward realizing such noninvasive per-
sonalized nICP assessment, using a model-based signal 
processing approach.

First, we developed a fully automated pipeline for sig-
nal quality assessment, waveform synchronization and 

alignment, and nICP estimation that can work in real time. 
The TCD-based CBFV waveform recordings are prone to 
waveform artifacts, noise, and signal dropouts, particu-
larly in noncooperative patients. Previous approaches to 
model-based nICP estimation have relied on visual inspec-
tion of data records and manual selection of data segments 
to ensure that waveform segments are of sufficiently high 
signal quality to pass them to the estimation algorithm.9,13 
The signal preprocessing approach described here also 
overcomes a major issue in multimodal waveform anal-
yses from multiple bedside devices—their lack of time 
synchronization which leads to drift. Our approach can 
work after data collection has occurred, and it is therefore 
applicable to a broader set of biomedical engineering ap-
plications where waveforms are collected from different 
bedside monitoring devices.

Second, we demonstrated that our approach was of suf-
ficient robustness that it performed well across the full 
pediatric age range (and therefore body and vascular sys-
tem sizes) and across various etiologies of coma. We also 
demonstrated that it is sufficiently accurate and precise for 
clinical decision-making. A recent meta-analysis compar-
ing the accuracy of invasive ICP monitoring approaches 
showed a pooled mean difference between paired read-
ings of 2 invasive probes of 1.5 mm Hg (95% CI 0.7–2.3 
mm Hg).22 In those studies included in the meta-analysis 
with 10 or more subjects, the reported SDEs ranged from 
1.1 mm Hg to 7.8 mm Hg. Our model-based nICP estima-
tion produced a bias of about 1.0 mm Hg and associated 
SDE of 5.1 mm Hg, which matches the clinically accepted 
accuracy and range of precision errors for routinely used 
invasive ICP monitors. Additionally, the approach yields a 
moderate posttest increase in the detection of elevated ICP, 
defined here as mean measured ICP > 15 mm Hg, which 
can help with triage decisions.

FIG. 5. ROC curves for detection of intracranial hypertension, defined as 
mean measured ICP > 15 mm Hg (approximately 20 cm H2O). Window-
by-window analysis of the hopping (nonoverlapping) estimation window 
approach resulted in 722 60-beat estimation windows and an AUC of 
0.79. Averaging the window-by-window nICP estimates for each study 
resulted in an AUC of 0.83 across all 44 studies.
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The current system is designed to permit real-time 
and continuous monitoring by an estimate of nICP based 
on measurements of radial ABP and TCD-based MCA 
CBFV. In our experience, high-quality MCA CBFV mea-
surements can be obtained reliably with minimal training. 
While the intra- and interoperator reliability of TCD-
based velocimetry measurements are generally considered 
good,5,12,19 we limited the risk of variation by having 2 
trained members of the study staff conduct essentially all 
TCD measurements. Furthermore, our model-based nICP 
estimates are comparatively insensitive to (constant) scal-
ing of the CBFV waveform as would be encountered if the 
same vessel were insonated under different (but constant) 
Doppler angles.9 We envisage that future iterations of our 
approach incorporate noninvasive ABP and operator-in-
dependent CBFV recording systems to enable continuous 
nICP estimation.15,17,18

We note some insights and limitations arising from 
the work presented here. Most importantly, careful bed-
side data collection with measurement of ABP and CBFV 
transducer heights for hydrostatic pressure correction is 
required, as is the need for careful signal quality assess-
ment. One issue is that we observed only a limited range 
in ICP per patient and across patients, with few measure-
ments > 20 mm Hg. Expansion of the patient pool will 
allow us to expand the ICP range and also to determine 
whether our approach can detect gradients in measured 
ICP in unilateral injuries.

Conclusions
We developed a fully automated approach to noninva-

sive, patient-specific, and calibration-free ICP monitoring 
based on analysis of simultaneous waveform recordings 
of ABP and MCA CBFV from bedside TCD ultrasonog-
raphy. Our results demonstrate a promising route toward 
safe, robust, and continuous nICP estimation at clinically 
acceptable accuracy and precision errors. This technique 
performed robustly in the ICP range of 15 to 25 mm Hg. 
This is a level at which management after severe TBI in 
children has been deemed necessary in a variety of pediat-
ric protocols, yet for which noninvasive and patient-specif-
ic technologies are currently still lacking.10 We believe that 
this technology could transform surveillance and interven-
tions beyond the care of pediatric patients with moderate 
to severe TBI to a number of coma-inducing conditions 
complicated by intracranial hypertension, worldwide, such 
as central nervous system infection.14
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Mathematical Formulation of Estimation Problem 

As described in Kashif et al.1, the circuit model representation shown in Figure 1a of the relevant cerebrovascular 

physiology is mathematically described by the first-order differential equation 

𝐶𝐵𝐹𝑉(𝑡) = 	 *+,(-)./0,
1

+ 𝐶 3
3-
	[𝐴𝐵𝑃(𝑡) − 𝐼𝐶𝑃] (1) 

where 𝐶𝐵𝐹𝑉(𝑡) is the cerebral blood flow velocity waveform at the middle cerebral artery (MCA); 𝐴𝐵𝑃(𝑡) is 

the corresponding arterial blood pressure waveform; C is the lumped cerebrovascular and brain tissue compliance; 

R is the resistance to blood flow through the MCA territory, and 𝐼𝐶𝑃 is the intracranial pressure. Equation (1) 

imposes a mathematical constraint between the model parameters R, C, and ICP on the one hand and the 

measurable waveforms 𝐶𝐵𝐹𝑉(𝑡) and 𝐴𝐵𝑃(𝑡)  the other hand. To estimate nICP, we record the MCA CBFV and 

the radial ABP waveforms and solve Equation (1) to obtain estimates of R, C, and ICP. Rather than solving 

Equation (1) for each cardiac cycle, we assume that R, C, and ICP are constant for the duration of 60 beats 

(estimation window) and estimate one value for R, C, and ICP for each 60-beat estimation window. 

To arrive at an nICP estimate, we decompose the estimation problem by first estimating C during the early 

ejection period when the rate of change in ABP is largest and flow into the MCA territory is predominantly stored 

in the expansion of the elastic arteries. Assuming the flow through the resistance is negligible during the ejection 

period, Equation (1) can be approximated as 

[𝐴𝐵𝑃(𝑡:) − 𝐴𝐵𝑃(𝑡;)] 	 ∙ 𝐶 ≈ ∫ 𝐶𝐵𝐹𝑉(𝑡?)𝑑𝑡?-A
-B

  (2) 

where 𝑡: and 𝑡; are the onset and end of the sharp systolic upslope in the 𝐴𝐵𝑃 wavelet. Equation (2) can be 

formulated for each beat in the estimation window, and the resultant set of equations can then be solved in a least-

square manner to arrive at the compliance estimate 𝐶C. With 𝐶C so estimated, the flow 𝐶𝐵𝐹𝑉1(𝑡) through the 

resistive element can be approximated as  

𝐶𝐵𝐹𝑉1(𝑡) = 𝐶𝐵𝐹𝑉(𝑡) −	𝐶C ∙ 3
3-
𝐴𝑃𝐵(𝑡) (3) 
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Making use of the constitutive relation for flow through the resistive element, 𝐼𝐶𝑃 was expressed as 

𝐼𝐶𝑃 = 𝐴𝐵𝑃(𝑡) − 𝑅 ⋅ 𝐶𝐵𝐹𝑉1(𝑡) (4) 

and under the assumption of constant ICP over a beat and estimation window, the resistance R can be estimated 

by evaluating Equation (4) at two (or more) time points during a cardiac cycle and eliminating the constant 𝐼𝐶𝑃: 

[𝐶𝐵𝐹𝑉1(𝑡;) − 𝐶𝐵𝐹𝑉1(𝑡:)] ⋅ 𝑅F = 𝐴𝐵𝑃(𝑡;) − 𝐴𝐵𝑃(𝑡:) (5) 

The final estimate of 𝐼𝐶𝑃 is then determined according to  

𝐼𝐶𝑃G =	𝐴𝐵𝑃HHHHHH −	𝑅F ⋅ 𝐶𝐵𝐹𝑉1HHHHHHHHH  (6) 

where the overbars indicate beat-averaged values of 𝐴𝐵𝑃 and 𝐶𝐵𝐹𝑉1. Equations (5) and (6) are likewise 

evaluated for each beat in the 60-beat estimation window and solved in a least-square manner to arrive at one 

estimate 𝑅F and  𝐼𝐶𝑃G  for each estimation window.  

Fine Signal Quality Assessment 

We evaluated the beat-by-beat ABP waveform quality by first computing, for each beat, the mean absolute 

sample-by-sample difference 𝑑I = mean
N∈[P(I),			P(IR:).:]

‖𝐴𝐵𝑃(𝑗) − 𝐴𝐵𝑃(𝑗 + 1)‖, where 𝑛(𝑖) denotes the onset 

sample of the 𝑖-th beat, and the interval [𝑛(𝑖), 𝑛(𝑖 + 1) − 1] spans all samples of the 𝑖-th beat. We computed a 

standardized score 𝑑XY = 	
‖3Z.3[HHH‖

3[HHH
   by subtracting and normalizing 𝑑I by a running average of the past 20 mean 

absolute deviations 𝑑X\ = 	 :
;]
	(𝑑I.: +	𝑑I.; + ⋯+ 𝑑I.;]). This beat-by-beat, normalized, absolute deviation 

metric 𝑑XY  assumes large values in regions in which the waveform morphology is corrupted by noise and artifact. 

We chose an empirical threshold of 0.3 to identify beats of questionable signal quality and to binarize the beat-

by-beat ABP signal quality metric (Supplemental Figure S1). 

The beat-by-beat fine CBFV signal quality was determined by first computing the spectral correlation 

between the ABP and CBFV signals over a sliding window of 8 s in duration and then quantifying the deviation 
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of each CBFV wavelet from an adaptively updated wavelet template.2  Since the lower frequency components of 

the ABP and CBFV waveforms are dominated by the cardiac beating frequency and its harmonics, the power 

spectra of the two signals normally have dominant peaks at the same frequencies. During periods of significant 

noise and artifact in one of the signals, the strength of this spectral correlation declines. In a first step, regions of 

the CBFV signal were identified for rejection if – in the frequency range from 0.5 to 5.0 Hz – the correlation 

coefficient between the power spectral densities of the CBFV and ABP was below the empirical threshold of 0.5. 

Subsequently, a CBFV wavelet template was obtained on potentially acceptable beats by computing the median 

CBFV wavelet across all beats that had not been rejected. This template was then used to assess the quality of the 

CBFV waveform on a beat-by-beat basis and to identify beats that had a large normalized mean-squared error 

when referenced to the template. 
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Supplemental Figure S1 Fine Signal-Quality Assessment (SQA). Examples of applying our fine SQA filter 
to (a) the ABP and (b) the CBFV waveform. Regions of poor waveform morphology are flagged (marked here 
in blue). (c) Regions of the input data are flagged and excluded from further analysis if either the ABP or the 
CBFV fine SQA flags indicate poor waveform quality.  
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Supplemental Figure S2 Beat-onset alignment. Sample cross-correlation between the ABP and CBFV 
waveforms. The time lag associated with the peak of the cross-correlation identifies the starting delay between 
the waveforms. We correct for this delay by subtracting it from the CBFV time stamps to achieve alignment of 
corresponding ABP and CBFV wavelets. 
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